Management of Stream and Graph Data

Amarnath Gupta

Prologue

I”

Two trends in developing “new model” data management

systems
How to build on top of existing data management systems

For example, how to represent tree-structured data (documents, XML, ...) in
a relational system

Using relational storage

Minimally extending the data operator set to accommodate the properties of

the new model
How to build a “native” system that

Exploits the properties of the new model

IH

Develops new and efficient algorithms for “natural” operators of the model

Often, as technology matures, output of the second category is
adapted/co-opted into traditional systems

Examples of New Models

Structure-based Models
Multidimensional arrays
Started in mid-90s, now carried out under SciDB and related efforts
Graph data

Started in the 80s, now flourishing in industry, open source communities and academia

Quality-based Models
Uncertain data

Started in the mid-80s as probabilistic relational model, now regaining importance due

to quality and trust issues
Data Property-based Models
Streaming data

Started with messaging systems, now growing in industry, open source communities

and academia

STREAM DATA

The 8 Requirements of Real-Time Stream Processing

Michael Stonebraker
Computer Science and Artificial
Intelligence Laboratory, M.I.T., and
StreamBase Systems, Inc.

stonebraker@csail.mit.edu

ABSTRACT

Applications that require real-time processing of high-volume
data steams are pushing the limits of traditional data processing
infrastructures. These stream-based applications include market
feed processing and electronic trading on Wall Street, network
and infrastructure monitoring, fraud detection, and command and
control 1 malitary environments. Furthermore, as the “sea
change™ caused by cheap micro-sensor technology takes hold, we
expect to see everything of material significance on the planet get
“sensor-tagged™ and report its state or location in real time. This
sensorization of the real world will lead to a “green field”™ of
novel monitoring and control applications with high-volume and

low-latency processing requirements.

Recently, several technologies have emerged—including off-the-
shelf stream processing engines—specifically to address the
challenges of processing high-volume, real-time data without
requiring the use of custom code. At the same time, some existing
software technologies, such as main memory DBEMSs and rule
engines, are also being “repurposed” by marketing departments to
address these applications.

In this paper, we outline eight requirements that a system software
should meet to excel at a vanety of real-time stream processing
applications. Our goal iz to provide high-level guidance to
information technologists so that they will know what to look for
when evaluation alternative stream processing solutions. As such,
this paper serves a purpose comparable to the requirements papers

Ugur Cetintemel
Department of Computer Science,
Brown University, and
StreamBase Systems, Inc.

ugur@cs.brown.edu

Stan Zdonik

Department of Computer Science,
Brown University, and
StreamBase Systems, Inc.

sbz@ecs.brown.edu

Similar requirements are present in monitoring computer
networks for denial of service and other kinds of security attacks.
Feeal-time fraud detection in diverse areas from financial services
networks to cell phone networks exhibits similar characteristics.
In time, process control and automation of industrial facilities,
ranging from o1l refineries to com flakes factonies, will also move
to such “firehose™ data volumes and sub-second latency
requirements.

There 1s a “sea change™ arising from the advances in micro-sensor
technologies. Although EFID has gotten the most press recently,
there are a variety of other technologies with various price points,
capabilities, and footprints (e.g., mote [1] and Lojack [2]). Over
time, this sea change will cause everything of material
significance to be sensor-tagged to report its location and/or state
in real time.

Military has been an early driver and adopter of wireless sensor
network technologies. For example, the US Army has been
imnvestigating putting wvital-signs momstors on all soldiers. In
addition, there 1s already a GPS system in many military vehicles,
but it is not connected yet into a closed-loop system. Using this
technology, the army would like to monitor the position of all
vehicles and determine, 1n real time, if they are off course.

Other sensor-based monitoring applications will come over time
in non-military domains. Tagging will be applied to customers at
amusement parks for ride management and prevention of lost
children. More sophisticated “easy-pass™ systems will allow

A Slightly Modified Version of 8 Rules

 Rule 1: Keep the Data Moving
(straight-through architecture,
no-store, no-poll)

 Rule 2: Query using SQL on
Streams (use a familiar query
language)

- Rule 3: Handle Stream
Imperfections (Delayed,
Missing and Out-of-Order
Data)

- Rule 4: Generate Predictable
(deterministic) Outcomes i.e.,

respect order while processing

- Rule 5: Integrate Stored and

Streaming Data

- Rule 6: Guarantee Data Safety

and Availability (must be
available with integrity at all
times). Use hot backup, and
real-time failover

- Rule 7: Partition and Scale

Applications Automatically
(elasticity)

- Rule 8: Process and Respond

Instantaneously (low latency)

What makes streams different?

In a traditional DBMS
Data is stored — it can be very large, but it is finite at any time
Queries come at random — once a query is answered, it is not persisted
In a data stream management system (DSMS)
The data keeps coming continuously, i.e., the data is infinite
Any piece of data is available for processing for a short time
Queries are registered and are often “standing” (or continuous)
Often the results are expected to be (near) real-time
Scientific examples
Data from sensor networks (including mobile applications)
Social network data (including participatory sensing)

Data from communication systems

DBMS vs. DSMS

Database management system (DBMS)

Data stream management system (DSMS)

Persistent data (relations)

volatile data streams

Random access

Sequential access

One-time queries

Continuous queries

(theoretically) unlimited secondary storage

limited main memory

Only the current state is relevant

Consideration of the order of the input

relatively low update rate

potentially extremely high update rate

Little or no time requirements

Real-time requirements

Assumes exact data

Assumes outdated/inaccurate data

Plannable query processing

Variable data arrival and data
characteristics

In many applications, streaming data must be processed along with stored data

A Data Model for Streams

A stream S is a (possibly) infinite bag (multiset) of elements
<s,T> where s is a tuple belonging to the schema of Sand tis the

timestamp of the element

Example: Traffic Data from California Dept. of Transportation
(data every 30 sec.)

Name Comment Units
Timestamp Sample time as reported by the field element as MM/DD/YYYY HH24:MI:SS.
Station Unique station identifier. Use this value to cross-reference with Metadata files.
L EE S Number of vehicle that passed over the detector during the sample period. N Veh/Sampl
ranges from 1 to the number of lanes at the location. e Period
Lane N Occupancy of the lane during the sample period expressed as a decimal number
Occupancy between 0 and 1. N ranges from 1 to the number of lanes at the location.

e sl Speed as measured by the detector. Empty if the detector does not report speed.
N ranges from 1 to the number of lanes at the location.

http://pems.dot.ca.gov/

A Stream (Event) Processor

The basic model
ordered tuples, often with an explicit timestamp
Declaring an event/stream
Esper (in-memory processor, available from http://esper.codehaus.org/)
Create schema LaneFlow(laneNum int, Flow int, Occupancy int, Speed float)
Create schema trafficData as (tStamp long, stationID int, LaneFlow[])
starttimestamp tStamp
StreamBase (allows stream persistence, available from http://streambase.com)
Create schema trafficData as (tStamp long, stationID int, laneNum int, Flow int, Occupancy int,
Speed float)

Create input stream trafficStream trafficData

Windowing

We cannot create blocking operations on streams

But we want to compute joins and aggregate functions like count, average

We create windows on streams

Within a window we can consider the data to be a snapshot relation and
perform table-like operations on it

Then we get the next block of data by moving the window

Types of window

How to shift
Sliding: move window on k ticks/time continuously or in blocks
Tumbling: create new window every k time-ticks or W size

How to construct a block

By time: window contains tuples within a certain time range, size varies with
data rate

By size: at any time window contains a fixed amount of items, new data
displaces old

Window-based Selection (Esper)

select * from MyStream

(UpdateListener 1
N J

Incoming Events New Events Old Events

W, (500) — Wi

W2(100) —»

W(200) —»

Wa(50) ——»

Ws(150) ——»

%
Time

select * from MyStream.win:length(5)

Receives updated data as soon as

it is processed for the statement

Incoming Events Length Window - 5 Events New Events Old Events

Wo(100) ——p

ven—{ (B
| (CEEE

e — (R
OEm

Updatelistener Updatelistener

N e Time Window - 4 seconds
. Filter Length Window - 5 Events New Events Old Events ncoming Events New Events Old Events
Incoming Events L e g . 1 1 AES "

|

W1(500) — g [IE W,

X

Wl 150) ——po

Wal300) ——m

Time

select * from MyStream(amount>=200).win:length(5)

UpdateListener UpdateListener
Filter: _ —

Incoming Events Length Window — 5 Events Amount>=200 New Events Old Events Incoming Events New Events Oid Events

W(500) — (E J
E=r) X

W3(200) —— {--- j

w— EEEEL) X

Wi

w;

woo — ([EEEFF]) X
We300) — [E]EI]

Ws

select * from MyStream.win:length(5) where amount >200 select * from MyStream.win:time_batch(4sec

| Time | Value | __imputstream | _Remove Stream |
0.2 w1 W1

0.8 w2 W2
1.0
1.2
1.5
2.0
2.1
2.2
2.5
3.0
select irstream value from 3.2

MyStream.win:time(5.5 sec) 3.5
4.0

4.3
4.9
5.0
5.2
5.7
5.9
6.0
6.2
6.3
7.0
7.2

Output Control

[Time | Value | _inputStream] _ RemovesStream |
Output Control g

1.0
1.2
1.5
2.0
2.1
2.2 W3, W4, W5
2.5
3.0
3.2
3.5
select irstream value from 4.0
MyStream.win:time(5.5 sec) 4.2

output every 1 seconds 4.3
4.9

5.0
5.2
5.7
5.9
6.0
6.2
6.3
7.0
7.2 w2, W3, wa

Time | Velue | inputstream | Removesweam
0.2 W1

0.8 W2
1.0
1.2
1.5
2.0
2.1
2.2
2.5
3.0
3.2
3.5
4.0
output last every 1 seconds 4.2
4.3
4.9
5.0
5.2

5.7
5.9
6.0
6.2
6.3
7.0
7.2

select irstream value from
MyStream.win:time(5.5 sec)

Time | Value | imputstream | Removesueam
0.2 W1

0.8 w2
1.0
1.2
1.5 W3, W4
2.0
2.1 W5
2.2 W1, W2, W3, W4, W5
2.5
3.0
3.2 W1, W2, W3, W4, W5
3.5
4.0
output snapshot every 1 seconds g W1, W2, W3, W4, W5, W6
4.3
4.9
5.0

5.2 W1, W2, W3, W4, W5, W6,
W7, W8

select irstream value from
MyStream.win:time(5.5 sec)

5.7
5.9
6.0

6.2 W2, W3, W4, W5, W6, W7,
w8, W9

6.3
7.0
7.2 W5, W6, W7, W8, W9

Window-Based Stream Partitioning

StreamBase

CREATE OUTPUT STREAM TrafficStats AS

SELECT openval() AS StartOfTimeSlice,

avg(Occupancy) AS AvgCarsPerSecond,

stdev(Occupancy) AS StdevCarsPerSecond,

lastval(Occupancy) AS LastCarsPerSecond,

StationNum

FROM trafficStream [SIZE 20 ADVANCE 1 ON
StartOfTimeSlice PARTITION BY
StationNum]

GROUP BY StationNum;

Esper

CREATE CONTEXT TrafficPerStation

PARTITION BY StationNum from
trafficStream

CONTEXT TrafficPerStation

SELECT timestamp,
avg(Occupancy) AS AvgCarsPerSecond,
stdev(Occupancy) AS StdevCarsPerSecond,
lastval(Occupancy) AS LastCarsPerSecond,

FROM trafficStream.win:length(20)

Pattern Specification

Streambase
SELECT A.id AS fi, C.id AS fo
FROM PATTERN A = !B = C WITHIN 5 TIME
WHERE B.id == A.id
INTO out;
Esper
select a.custld, sum(a.price + b.price)
from pattern

[every a=ServiceOrder = b=ProductOrder(custld = a.custld)
where timer:within(1 min)].win:time(2 hour)

where a.name in (‘Repair', b.name)
group by a.custld

having sum(a.price + b.price) > 100

Toward a Distributed DSMS for Large, High
Velocity Data

Goals
Guaranteed data processing
Fault tolerance
Horizontal scalability

Allows one to use a high-level programming language

What Is Apache Hadoop?

The Apache™ Hadoop® project develops open-source software for reliable, scalable, distributed computing.

The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale
up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and
handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures.

The project includes these modules:
Hadoop Common: The common utilities that support the other Hadoop modules.
Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application data.

Hadoop YARN: A framework for job scheduling and cluster resource management.
Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

Two Recent Distributed Stream Platforms

s distributed stream
computing platform

What 1s S47?

home

54 is a general-purpose,near real-time, distributed, decentralized, scalable, event-driy

applications for processing continuous unbounded streams of data.
54 0.5 focused on providing a functional complete refactoring.
54 0.6 builds on this basis and brings plenty of exciting features, in particular:

* major performance improvements: stream throughput improved by 1000 % (2

What are the cool features?

Flexible deployment:

* Application packages are standard jar files (suffixed .s4r)
* Platform modules for customizing the platform are standard jar files
* By default keys are homogeneously sparsed over the cluster: helps balance the 19

Trident is a high-level abstraction for doing realtime computing on top of Storm. It allows you to seamlessly intermix high throughput
(millions of messages per second), stateful stream processing with low latency distributed querying. If you're familiar with high level batch
processing tools like Pig or Cascading, the concepts of Trident will be very familiar — Trident has joins, aggregations, grouping, functions,

and filters. In addition to these, Trident adds primitives for doing stateful, incremental processing on top of any database or persistence

doc code API get involved team download

Storm

Distributed and fault-tolerant realtime computation about documentation blog downloads community

Storm is a free and open source distributed realtime computation system.

Storm makes it easy to reliably process unbounded streams of data, doing

for realtime processing what Hadoop did for batch processing. Storm is n Download Storm
simple, can be used with any programmming language, and is a lot of fun to

use!

Storm has many use cases: realtime analytics, online machine learning, Source code
continuous computation, distributed RPC, ETL, and more. Storm is fast: a

benchmark clocked it at over a million tuples processed per second @Star 6,508

per node. It is scalable, fault-tolerant, guarantees your data will be
processed, and is easy to set up and operate.

Community

ﬁ / \ e 3 Follow @stormprocessor
:” e Mailing list
- el

store. Trident has consistent, exactly-once semantics, so it is easy to reason about Trident topologies.

Storm Cluster Setup

* Using Apache Zookeeper for coordination
* Supervisor: worker nodes (like Hadoop task

tracker)
* Nimbus: coordinator node (like Hadoop job
Zookeeper
Zookeeper

Zookeeper

Supervisor

Distributed Data Management, So0Se 2013, S. Michel 18

N

"-bApache ZooKeeper™

Welcome to Apache ZooKeeper™

Apache ZooKeeper is an effort to develop and maintain an open-source server which enables highly reliable distributed coordination.

‘What is ZooKeeper?

ZooKeeper is a centralized service for maintaining configuration information, naming, providing distributed synchronization, and providing group services. All of these
kinds of services are used in some form or another by distributed applications. Each time they are implemented there is a lot of work that goes into fixing the bugs
and race conditions that are inevitable. Because of the difficulty of implementing these kinds of services, applications initially usually skimp on them ,which make them
brittle in the presence of change and difficult to manage. Even when done correctly, different implementations of these services lead to management complexity when

the applications are deployed.

Learn more about ZooKeeper on the ZooKeeper Wiki.

Getting Started

Start by installing ZooKeeper on a single machine or a very small cluster.

1. Learn about ZooKeeper by reading the documentation.

2. Download ZooKeeper from the release page.

* Hierarchical data model, simple API:
create, delete, exists, get data, set
data, get children, sync

fapp1 fapp2
* Used to implement higher level :
applications :
fappifp_1 fappi/p_2 fappl/p_3
Distributed Data Management, So05e 2013, 5. Michel 19

http://zookeeper.apache.org/doc/trunk/zookeeperOver.html

Zookeeper Guarantees

Sequential Consistency: Updates from a client will be applied in
the order that they were sent.

Atomicity: Updates either succeed or fail.

Single System Image: A client will see the same view of the
service regardless of the server that it connects to.

Reliability: Once an update has been applied, it will persist from
that time forward until a client overwrites the update.

Timeliness: The clients view of the system is guaranteed to be up-
to-date within a certain time bound.

Storm and Zookeeper

Storm uses Zookeeper for

Discovery of nodes
Storing the state of Nimbus and Supervisor processes

Guaranteed message processing and tracking
Storing statistics

The actual heavy lifting (i.e., internode
communication) uses a library called zero MQ

scriber = context.socket (zmg.SUB)
scriber.connect ("tep://192.168.55.112:5556")
"tep://19%2.168.55.201:7721")
riber.setsockopt (zmg.SUBSCRIBE, "NASDRAQO™)

isher = context.socket (zmg.PURB)

isher.bind ("ipc://nasdag-feesd")

The Storm Computing Model

Spouts: A spout is a source of streams. For example, a spout may read tuples off of a
Kestrel queue and emit them as a stream. Or a spout may connect to the Twitter API
and emit a stream of tweets.

Bolts: A bolt consumes any number of input streams, does some processing, and
possibly emits new streams. Complex stream transformations, require multiple steps
and thus multiple bolts. Bolts can do anything from run functions, filter tuples, do
streaming aggregations, do streaming joins, talk to databases, and more.

Topology: A topology is a graph of stream transformations where each node is a
spout or bolt. Edges in the graph indicate which bolts are subscribing to which
streams. When a spout or bolt emits a tuple to a stream, it sends the tuple to every
bolt that subscribed to that stream.

A Simple Non-trivial Example

Credit: Svend Vanderveken
Scenario

There is a building with a number of rooms. There are a bunch of
people wearing sensors going into and coming out of rooms. Every time
some one enters and leaves, the sensors emit data giving out that
information with a timestamp.

Goal: create an occupancy timeline for each room.
Data schema: (eventType, userlID, timeStamp, roomID, datalD, corrID)

Events are not guaranteed to respect chronological order

Input and Output

What comes in

{"eventType": "ENTER", "userld": "John_5", "time": 1374922058918, "roomld": "Cafetaria", "id":
"bf499c0bd09856e7e0f68271336103e0A", "corrld": "bf499c0bd09856e7e0f68271336103e0"}
{"eventType": "ENTER", "userld": "Zoe_ 15", "time": 1374915978294, "roomld": "Conf1", "id":
"3051649a933a5ca5aeff0d951aa44994A", "corrld": "3051649a933a5ca5aeff0d951aa44994"}
{"eventType": "LEAVE", "userld": "Jenny_6", "time": 1374934783522, "roomld": "Conf1", "id":
"6abb451d45061968d9ca01b984445ee8B", "corrld": "6abb451d45061968d9ca01b984445ee8"}
{"eventType": "ENTER", "userld": "Zoe_ 12", "time": 1374921990623, "roomld": "Hall", "id":
"86a691490fff3fd4d805dce39f832b31A", "corrld": "86a691490fff3fd4d805dce39f832b31"}
{"eventType": "LEAVE", "userld": "Marie_11", "time": 1374927215277, "roomld": "Conf1", "id":
"837e05916349b42bc4c5f65c0b2bca9dB", "corrld": "837e05916349b42bc4c5f65c0b2bca9d"}
{"eventType": "ENTER", "userld": "Robert_8", "time": 1374911746598, "roomlId": "Annex1", "id":
"c461a50e236¢cb5b4dbb2f45d1de5cbb5A", "corrld": "c461a50e236cb5b4d6b2f45d1de5cbb5"}

The Computation Scheme

- roomB

Cafetaria

Conf2

roomA
o]

Hall roomB

=..| |event=..

Cafetaria

avent= ...

multi get:
get timeline of
{roomA,
roomB, Hall}

group by
roomid

multi get:
get timeline of
{Cafetaria,
Conf1}

multi get:
get timeline of
{Conf2}

2

2

roomaA rooma rooma

reducer /
combiner

roomB roomB
even%:... event=... :>

reducer /
combiner

Hall Haill Haill
event= .. even%:,_ even%:... E>

reducer /
combiner

Cafetaria_ Cafetaria

reducer /

event= .| |event=.. combiner

Caonf1 Caonf1

reducer /

event= .| |event=.. combiner

Conf2 Conf2 Conf2

event= ...
Conf2

event= ..
Conf2

reducer /
combiner

Conf2 :>

event= .| |event=..| [event=..

roomA's
timeline
roomB's
timeline
Hall's

timeline
Cafetaria

timeline
Confl's ll:
timeline

Conf2's E>
timeline

DB - Room timelines

roomA: {timeline = ..}

roomB: {timeline = ..}

Hall: {timeline = ..}

Cafetaria: {timeline = ..}

Conf1:{timeline = ...}

Confz: {timeline = ..}

multi put:
timelines of

{roomA,
roomB, Hall}

multi put:
timelines of
{Cafetaria,
Confi}

multi put:
timelines of
{Conf2}

Trident Topology

Goal: build a minute-by-minute occupancy timeline of each room

Read input events in JSON
TridentTopology topology = new TridentTopology();

topology
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))

.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent"))
Gather "enter" and "leave" events into "presence periods"

.each(new Fields("occupancyEvent"), new ExtractCorrelationld(), new Fields("correlationld"))
.groupBy(new Fields("correlationld"))

.persistentAggregate(PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new PeriodBuilder(),
new Fields("presencePeriod"))

.newValuesStream()

Build room timelines

.each(new Fields("presencePeriod"), new IsPeriodComplete())

.each(new Fields("presencePeriod"), new BuildHourlyUpdatelnfo(), new Fields("roomld", "roundStartTir

.groupBy(new Fields("roomld", "roundStartTime"))

.persistentAggregate(TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomld", "roundSta
new TimelineUpdater(), new Fields("hourlyTimeline"));

Trident Topologies

Trident topologies compile down into as efficient of a Storm
topology as possible. Tuples are only sent over the network
when a repartitioning of the data is required, such as if you do a

groupBy

Trident Topology

Goal: build a minute-by-minute occupancy timeline of each room

Read input events in JSON
TridentTopology topology = new TridentTopology();

topology
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))

.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent"))
Gather "enter" and "leave" events into "presence periods"

.each(new Fields("occupancyEvent"), new ExtractCorrelationld(), new Fields("correlationld"))
.groupBy(new Fields("correlationld"))

.persistentAggregate(PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new PeriodBuilder(),
new Fields("presencePeriod"))

.newValuesStream()

Build room timelines

.each(new Fields("presencePeriod"), new IsPeriodComplete())

.each(new Fields("presencePeriod"), new BuildHourlyUpdatelnfo(), new Fields("roomld", "roundStartTir

.groupBy(new Fields("roomld", "roundStartTime"))

.persistentAggregate(TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomld", "roundSta
new TimelineUpdater(), new Fields("hourlyTimeline"));

Trident Abstractions

Fields and Tuples Tuples are internally processed in batches

Suppose there is a stream stream(x, v, z)

stream.each(new Fields("y"), new MyfFilter())
public class MyFilter extends BaseFilter {
public boolean isKeep(TridentTuple tuple)
{ return tuple.getinteger(0) < 10; }

}

stream.each(new Fields("x", "y"), new AddAndMultiply(), new
Fields("added", "multiplied"));

public class AddAndMultiply extends BaseFunction {
public void execute(TridentTuple tuple, TridentCollector collector)
{int il = tuple.getinteger(0);
int i2 = tuple.getinteger(1);

“Collectoremit(new Values(il + 2, i1 * i2));

Trident Topology

Goal: build a minute-by-minute occupancy timeline of each room

Read input events in JSON
TridentTopology topology = new TridentTopology();

topology
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))

.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent"))
\ Gather "enter" and "leave" events into "presence periods"

.each(new Fields("occupancyEvent"), new ExtractCorrelationld(), new Fields("correlationld"))
.groupBy(new Fields("correlationid"))

.persistentAggregate(PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new
PeriodBuilder(), new Fields("presencePeriod"))

.newValuesStream()

Build room timelines

.each(new Fields("presencePeriod"), new IsPeriodComplete())
.each(new Fields("presencePeriod"), new BuildHourlyUpdatelnfo(), new Fields("roomlId",
"roundStartTime"))
.groupBy(new Fields("roomld", "roundStartTime"))
.persistentAggregate(TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomld",
"roundStartTime"),

new TimelineUpdater(), new Fields("hourlyTimeline"));

Computing Aggregates

Suppose we have a stream with fields vall and val2
stream.aggregate(new Fields("val2"), new Sum(), new Fields("sum"))

The output stream would only contain a single tuple with a single field
called "sum", representing the sum of all "val2" fields in that batch.

stream.groupBy(new Fields("vall")) .aggregate(new Fields("val2"), new
Sum(), new Fields("sum"))

the output will contain the grouping fields followed by the fields emitted by
the aggregator

the output will contain the fields "vall" and "sum"

Trident States

State: content of the data at any instant

Sometimes we want to do state updates (e.g., an external databases) so
that it's like each message was only processed only once
Trident solves this problem by doing two things:
Each batch is given a unique id called the "transaction id". If a batch is
retried it will have the exact same transaction id.

State updates are ordered among batches. That is, the state updates for
batch 3 won't be applied until the state updates for batch 2 have

succeeded.

Trident PersistentAggregates

persistentAggregate is an additional abstraction that
takes a Trident aggregator
uses it to apply updates to the source of state
The programmer implements the "MapState" interface

The grouping fields will be the keys in the state, and the aggregation result
will be the values in the state.

public interface MapState<T> extends State{
List<T>multiGet(List<List<Object>> keys);
List<T>multiUpdate(List<List<Object>> keys, List<ValueUpdater> updaters);

void multiPut(List<List<Object>> keys, List<T> vals); }

An Example

public class PeriodBackingMap implements IBackingMap<RoomPresencePeriods> {

public static StateFactory FACTORY = new StateFactory() {
public State makeState(Map conf, IMetricsContext metrics, int partitionIndex, int numPartitions) {
S our Logic is fully idempotent => no Opagque map nor Transactional map required here. ..

return NonTransactionalMap.build(new PeriodBackingMap()):

b

public List<RoomPresencePeriod» multiGet(List<lList<Object>» keys) {

return CassandraDB.DEBE.getPresencePeriods(toCorrelationIdList(keys));

public void multiPut(List<List<Object»> keys, List<RoomPresencePeriod> newOrlUpdatedPeriods) {
CassandraDB.DB.upsertPeriods(newOrUpdatedPeriods):

private List<5tring> toCorrelationIdList(List<List<Object>> keys) {
List<String® structuredKeys = new LinkedList();
for (List<Object> key : keys) {
structuredKeys.add((5tring) key.get(@)):

}

return structuredKeys;

Trident Topology

Goal: build a minute-by-minute occupancy timeline of each room

Read input events in JSON
TridentTopology topology = new TridentTopology();

topology
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))

.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent"))
Gather "enter" and "leave" events into "presence periods"

.each(new Fields("occupancyEvent"), new ExtractCorrelationld(), new Fields("correlationld"))

.groupBy(new Fields("correlationid"))
.persistentAggregate(PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new PeriodBuilder(),

new Fields("presencePeriod"))
.newValuesStream()

Build room timelines

.each(new Fields("presencePeriod"), new IsPeriodComplete())
.each(new Fields("presencePeriod"), new BuildHourlyUpdatelnfo(), new Fields("roomlId",
"roundStartTime"))
.groupBy(new Fields("roomld", "roundStartTime"))
.persistentAggregate(TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomlid",
"roundStartTime"),

new TimelineUpdater(), new Fields("hourlyTimeline"));

Monitoring Energy Use Courtesy: Yuvraj Agarwal

At SDSC, we are evaluating this framework for an application
called BuildingDepot

BACNet and ION Network

Campus __.__W — L‘[OPC Server w/ CS Data Service
Facilities -~ ~_ | Connector (cs.au.edu/bd-data)

E__—"AU Dashboard Web App

3 (campus.au.edu/dashboard) e
SoA Data Service Total Campus Data Service
(soa.au.edulbd-data) (campus.au.edu/ds) ME Data Service

\/ SoE Directory Server (me.au.edu/bd-data)

(soe.au.edu/bd-dir)

9

Top Level Directory Server EE Data Service
(ob.au.edu/bd-dir) (ee.au.edu/bd-data)

Social Sciences

Monitoring and Control of Energy Use in Buildings
- Instrumenting more buildings with newer sensors and actuators
- 80k sensor streams now, will increase to 500k soon
- Using more spatial knowledge for effective predictive analysis

Social Life Networks

constructs update
omputation

ﬁ‘nkﬂ updarte Global ™ | Matching Situation |
' Crtuation
; Patabases

Representation Y
Micro-Situation? ‘:%_; el
T
~—— -
ha = ~ a—
Micra-5Situation Descriptos . . e Pk
L r-|. 5§ I

T
Fhone apps
Ik rmvet
of Things

GRAPH DATA

What Do You Mean “Graphs”?

a2 G, Oe D
.................

Oh! You mean Networks!!

Edge Properties In this graph
" Edges are
Node o, ;' directional

Properties There are no

edge weights
Nodes do not
have their
own types

There are no
self loops

No logical
constraints

A Real-World “Business” Problem

Who should be on my board of advisors?
| already have A, B, C and D and need two more people who should

Have name recognition in their fields, which should be “around” Computer
Science

Should have reasonably high visibility

Should be known to at least two of my current members
Should get along with C

Have a lot of “business connections”

Be independently wealthy, and if possible, an entrepreneur

Not be involved in any recent negative press

A Real-World Science Problem

What are potential pharmaceutical compounds C which are
potentially useful for orphan disease D?

These compounds should satisfy the following properties
They are not yet applied to D
They are not in the FDA approval pipeline for D
They have been applied to humans and model organisms
They operate on genes products in pathways that are relevant

Because these pathways are related to some phenotypes exhibited by D in

humans or model organisms

They have not been identified as toxins for any target related to human
health

Why is a Graph a “Natural Model” for
these problems?

Structurally, most data models can be viewed as graphs

Does not mean they should be

Relation R(A,B,C), pk(A) — with tuple r1(1,2,3) can become
R—attrib=>A, R—attrib—>B, R—attrib>C, R—pk—=>A
rl—instanceOf->R
r1-A->1,r1—B—>2,r1—C—>3

XML (without idRef) is modeled as an edge-labeled tree, therefore it is a

graph publicati::i/r

journal

(@) 3)

id
e Ttle chapter titleh
) LB} (7) (-E-lr‘i (9
0-11-5" XML overview’ fitl ection ‘0-22-9' ‘Java section
programming’

chapter

@ @ (9

‘Introduction’ twre table

&) (1) 0
‘command’

‘data model’ caption
O]

‘Fig. 1- XML Data
Model'

Why is a Graph a “Natural Model” for
these problems?

How about text? S

Parsegraphs e
NP VP
NP CC] MD ADVP VP]
NN NNS J NN NNS T T VB J NN NNS
ABeta and/or extracellular ABeta deposits may promote intracellular alpha-syn aggregation

Peptides

Why is a Graph a “Natural Model” for
these problems?

Ontologies are graphs (with rules)
Social Interactions are graphs

Therefore regardless of whether
data are “born” as graphs, they can
be abstracted as graphs

This makes graphs a uniquely
positioned data model for
heterogeneous information
integration

However, these graphs may have
different semantics that need to be
accounted for

A Real-World “Business” Problem

Who should be on my board of advisors?

| already have A, B, C and D and need two more people who should

Have name recognition in their fields, Jel:=s% their citation networks to compute h-index variants

Query DBPedia graph for subjects and areas
V1 aTTol o B gTo V] o N e ToRF- o 1WT oo M @e] pa o I {=I@YO[IaTel=M related to CS, authors from DBLP to get pub
venues and authors

Should have reasonably high visibility

Web pages (journals, conf.,,

research labs ...) to find
“important positions”

Should be known to at least two of my current members

Co-presence graphs
Should get along with C

Have a lot of “business connections” BEWLEERET Tl

. : . Linked-In Profile,
Be independently wealthy, and if possible, an entrepreneur FSSEISw 50 il

Not be involved in any recent negative press REGLGELHH

Graph Functionality needed

Storage, of course
Computation with graphs

For example, finding centrality measures
Retrieval

Conditional traversals, query pattern matching
Manipulations

Intersections, joins
Mining

Finding k most frequently referred entities over a set of entity-mapped graphs in a

given context

Finding frequent structural patterns

Ranking over paths

Is this connection (i.e., path) between two members more important than that?

Representation and Storage

Somewhat dependent on

Neodj— a traversal-centric system

Your graph on disk

Name:‘istair
Age: 34

KNOWS

Name: lan
Age: 42

the intended functionality

Simple sample graph. 1t all botls down to

linked lists of fixed size records on disk.

Propertles are stored as a [inked [ist of

properfy records, each holding key+value.

Eacﬂ node/relationship references its first

property record.

The Nodes also reference the first node inits

relationship chaln.

Each Relationship references its start and

end node.

It also references the prev/next relationship
m for the start/end node respectively

.
.
“eneotechnology

Name: Tobias

Age: 27

Nationality: Swedis

KNOWS

Name: Jim

=7

e
KNOWS

Stuff: good

Simple sample graph. It all botls down to
linked lists of fixed size records on disk. K _

Your graph on disk [EEEAEIERS W
property records, each holding key+value. ‘@aneotechnolo
Each node/relationship references its first o EU 7 relatiarsains gy
Name property record.
. The Nodes also reference the first node in its
Alistair relationship chaln.
Each Relationship references its start and
- Tl aloret he prev/iext rel
t also reterences the prev/next rels
KNOWS H‘FEMI_]I' the start/end node resye

.

Age
27
Mationality
KNQWS Swedish
KNOWS\
KNOWS
. Name
Jim

\ Age

Name . 37
lan KNO —— Stuff
Age good

42 4

Simple sample graph. It all boils down to
linked lists of fixed size records on disk. [J

Your graph on disk [t A S
property records, each holding key+valye. ‘@& heotechnolo
Each node/relationship references its first o EU' n reatiarsine gy
Name co Fr property record.
- = Thle HUdEﬁ alsi:1 reference the first node in its
relationship chain.
1) N B Each Relationship references its start and

. P — ———H ehd node.

Alistair

Age
27
v SN“N \ Nationality
KNQWS Swedish
KNOWS\, sp|ep
e JEi
KNOWS
. Name
LR NEP Jim
\ SN F Age
Name — z, » - 37
lan KNO Stuff
Age good

42 4

Simple sample graph. It all botls down to
linked lists of fixed size records on disk. 9o

. Properties are stored as a linked list of a®
YO U r g rap h 0 n d I S k |:rt:|'|:ert1-r records, each holding kevﬂglue. .'. [1130 i[edl][_m]ogy

Each node/relationship references its first
Name | property record.
. - u ng Nodes also reference the first node in its
Alistair suship chain.

S) RSB Each Relatianship references its start and

. It also referencés the prev/next rels
KNOWS record for the start/end node regpe

- SN EN Mationality
KNOWS Swedish
KNOWS SP EP
ot I
KNOWS
‘ | Name
<’ FEP Jim
SN F: 458
Name 0 - 37
lan KNOWS Stuif
Age good

42 4

Simple sample graph. It all boils down to
linked lists of fixed size records on disk. K

. Properties are stored as a linked list of 8"
YO U r g rap h 0 n d I S k |:r1:|'|:ert1-r records, each holding kevﬂglue. .'. [1130 i[edl][_m]ogy

Each node/relationship references its first

Name | property record.
. . < = he Nodes also reference the first node in its
Alistair suship ehain.

anship references its start and

= SN EN Nationality
KNOWS Swedish
KNOWS SP EP
€ | Enl
KNOWS
. | Name
< EP Jim
SN F: 258
Name 0 - 37
lan KNOWS Stuit
Age good

42 4

Neo4) Storage Record Layout

Node (9 bytes)

inlsa nextRealld nastPropld

i 5]

Relationship (33 bytes)

inllse lieiMode sacondMods relationshipType Tirgt PresFaild TirsiNexiFalld secondPrevelld sacondMexiFalld naxiPropld

i 5] 13 17 21 25 29 33

Relationship Type (5 bytes)

inllse typaBlockid

1 5

Property (33 bytes)

inllsa typa keyindexld propBlosk AextPropld

i 3 5 29 33

Propenty Index (9 bytes)

inllse propCount keyBlockid

i 5 : |

Dynamic Store (125 bytes)

inllse next data

i 5

NeoStore (5 bytes)

inllsa dalum

i 5

What we put in cache ® g heotechnology

ID Relationship ID refs

inn R1 R2 .. Rn The strueture of the elements in the high level

1 objeet cache.
- o0t" R1 R2 .. Rn Y
v : On disk most of the information Is contained
E 5 in. R1 R2 R3 .. Rn in the relationship records, with the nodes just

= L R1 R referencing thelr first relationship. In the

‘Node - = L cache this Is furned around: the nodes hold
|8 references to all its relationships. The

relationships are simple, only holding its
properties.

The relationships for each node Is grouped by
EelationshipType to allow fast traversal of a
specific type.

All references (dotted arrows) are by I and
traversals do indirect lookup through the cache.

k] “
‘*_ID"«.;‘I.:art end type
Relationship

Key 1 Key?2 Key n

T IeA
Z IBA
u |ep

Representation and Storage
Dex: A Retrieval-Centric Storage Model

Logical graph model

Labeled: nodes and edges are “typed”

Directed: edges can have a fixed direction

Attributed: nodes and edges can have multiple single-valued attributes
Multigraph: two nodes can be connected by multiple edges

[=] Graph database schema [= Graph database instances

COMTACT
since [TIMESTAMF

*sparsity

technologles

-
a
il
u
—
o
el
| =
a
£
a
(=]
mn
=
n
=
a
hn
1
=
n
pd
mn
o
i
o
n
|
C
a
L&
=
n
£
R
=
L —
e
Q
ﬂl.
=
o
T
mn
5
[T1]
o

DAMA-UPC. DATA MANAGEMENT
UNIVERSITAT POLITEGHNICA DE CATALUNYA

Internal representation

2 Requirements

Split the graph into smaller structures
« Favour the caching
« Move to main memory just significant parts

OIDs instead of objects
« Reduce memory requirements

Specific structures to improve traversals
+ Index edges of a node

Attributes fully indexed
« Improve queries based on value filters

*sparsity

technologies

=
Q
o
0
-
)
o
=
a
=
Q
=)
g
c
=
=
Q
7]
L
£
C
o
0
(a
-
(=1
0
=
O
Q
U
=
=
=
I
=
[+
™
Q
<
£
l?
L
L
i
w
(o]

DAMA-UPC. DATA MANAGEMENT
UNIVERSITAT POLITEGNIGA DE GATALUNYA

Internal representation

0 Our approach:
= Map + Bitmaps = Link

O Link: bidirectional association between values and OIDs

= Two functionalities:
» Given a value - a set of OIDs (a bitmap)
« Given an OID = the value

Bitmaps

O=NUE

£
Q
el
[N}
-
N
el
=
a
£
a
o
)
=
1)
=
a
w
n
=
n
ol
1)
(a]
L =
=8
n
=
O
Q
o
=
1)
£
1™
Q
[.
|
@
(8
1
L =
S
-
9
5
11
(a]

* : L
sparsity .
technologies L I n k DAMA-UPGC. DATA MANAGEMENT
AR 0T detan LUHIVERSITAT POLITECHICA DE CATALLUMYA

Graphs and Bitmaps

/"'"_-___""\\

" ARTICLE [v1] 7~ ARTICLE [v3] ° El‘\BEL [e2] /" ARTICLE [v2]
id=1 id=3 nic="en" id=2
(title="Europa” title="Europe” title="Europe™

CONTAINS [e5]
IMAGE [v5]
id=1
filename="europe.p
CONTAINS [e6]

(/a RTICLE [v4] IMAGE [v6]

CONTAINS [e7] filename="bcn

I RELATIONSHIPS I ATTRIBUTES
TARLS

Software architecture

Implementation details:

2 37-bit unsigned integer OIDs
= + 137 billion objects per graph

2 Bitmaps are compressed
« Clusters of 32 consecutive bits
« Just existing clusters are stored

2 Groups of OIDs for each type
= Higher density of consecutive bits into bitmaps

2 Maps are B+ trees
« A compressed UTF-8 storage for UNICODE strings

L]
*sparsity
technologies DAMA-UPC. DATA MANAGEMENT
pervmpace bn actias UNIVERSITAT POLITECNIGA DE CATALUNYA

E
aQ
17,
=
Ty
b
=
Q
E
)
oh
)
=
1)
-
Q
0
"
a’
"
i
1)
o
£
=8
"
=
L
aQ
W
=
o
=
=
o
=
Q
b
L
I?
e
1)
b3
wi
(]

Graph Computation

Computing properties of nodes that are based on
the structure/content of the graph
evolving structure/content of the graph
Often uses adjacency matrices
Many of these computations are iterative which eventually converge
Classical MapReduce-based computations are not iterative

Systems like Mesos and Spark are trying to modify these computations to
allow iterative algorithms that pass data from iteration to iteration

Harder for large graphs if they don’t remain in memory

This led to the development of Bulk Synchronous Graph Processing
algorithms

Google’s Pregel

BSP Example

Master
Task

)

Worker Worker Worker k

Hadoop Distributed File System (HDFS

(input graph file)
(output files)

Pregel/GPS Overview

¢+ Each vertex has a value, and is either
active or inactive

¢ Each iteration (superstep): each vertex
receives messages, calls a UDF
Vertex.compute(), sends messages.

“+ Master calls Master.compute() once

% Vertex.compute()=>parallel computations
Master.comptute()=>serial computations

+ Vertices synchronize at the end of each
superstep => Bulk-Synchronous Parallelism

GPS - Stanford’s Graph Computation System

Some interesting decisions

GPS includes an optimization called LALP (large adjacency list partitioning)

where adjacency lists of high-degree vertices are partitioned across
workers

This optimization can improve performance, but only for algorithms with two
properties:

Vertices use their adjacency lists (outgoing neighbors) only to send messages and
not for computation

If a vertex sends a message, it sends the same message to all of its outgoing
neighbors

Dynamic Repartitioning

Reassign certain vertices to other workers dynamically during algorithm
computation

Query Operations over Graphs
Neo4;

Traversals - how do they work? ® e neotechnology

@ RelationshipExpanders: given (a path to) a node, returns T urface
Relationships to continue traversing from that node lrecact with.

@ Evaluators: given (a path to) a node, returns whether to:

® Continue traversing on that branch (i.e. expand) or not
® Include (the path to) the node in the result set or not

@ Then a projection to Path, Node, or Relationship applied to
each Path in the result set.

... but also:

@ Uniqueness level: policy for when it is ok to revisit a node
that has already been visited

@ Implemented on top of the Core API

11

@ Fetch node data from cache - non-blocking access
This is what happens

vnder the hood.

® I f not in cache, retrieve from storage, into cache
»If region is in FS cache: blocking but short duration access
»If region is outside FS cache: blocking slower access
@ Get relationships from cached node
® I f not fetched, retrieve from storage, by following chains
@ Expand relationship(s) to end up on next node(s)
® The relationship knows the node, no need to fetch it yet
@ Evaluate
® possibly emitting a Path into the result set

@ Repeat "

DEX Graph Database

Query Database in Dex

Retrieve data example

DbGraph dbg = s.getDbGraph();
Objects persons = dbg.select(person);
Objects. lterator i1t = persons.iterator();
while (1t.hasNext()) {

long p = 1t.next();

String name = dbg.getAttribute(p,
name) . toString(); JOHN

} 18

it.close(); -
KELLY
4p
MARY

persons.close();
httoild

/

*sparsity

technologies

Query Database in Dex

Navigation & Objects operations example

Objects objsl = dbg.select(when, >=, 5pm);
// objsl = { e5, e6 }

Objects objs2 = dbg.explode(pl, phones, OUT);
// objs2 = { e4, e5 }

Objects objs = objsl.intersection(objs?);

// objs = { e5, e6 } N { e4, e5 } = { e5 }

objs.close();
objsl.close(); JOHN

objs2.close(); 18 ~\5ﬁng\~
5

KELLY

4p
9
MARY

95
6
-ll!!l'a

*sparsity

DEX Graph Database

perf

OUR RESEARCH — OPERATING ON
ONTOLOGY GRAPHS

The Shredded Ontology - 1

. The reified triples

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" /> Wine E food:PortableLiquid
<rdfs:subClassOf> Wine C 3 hasMaker.Winery
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />

<owl:someValuesFrom rdf:resource="#Winery" />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

The Shredded Ontology — 2

DAGs for
transitive relationships
part-of, continuous-with, member-of

sub-property relationships
volumetric-part-of <, proper-part-of <., part-of

. The DAG Indexes

- One per transitive relationship, one per subproperty
tree

- Modified SSPI

- Index the embedded tree and non-tree portions separately

- Embedded tree has a Dewey index

- Non-tree edges is maintained in a “minimal” skeleton structure to
connect them to nearest ancestors

- Statistics is kept at nodes to perform limited-depth
gueries

- Complex, multi-reachability patterns still a problem
- It is wiser to treat “hub nodes” specially

The Shredded Ontology — 3

- Bitmap Indices

- Derived from RDF triples

PSindex Property
POIndex Property
SOIndex Subject

SSJindex Property
SOlJindex Property
OOlJIndex Property

Subject Objects (bitmap)
Object Subjects (bitmap)
Object Properties(bitmap)

Property Subjects (bitmap) (S,P1,01),(S,P2,02)
Property Subjects (bitmap) (X,P1,0),(S,P2,X)
Property Objects (bitmap) (51,P1,0),(S2,P1,0)

Using the Bitmap Indices
» Select genes that have no associated proteins
» POIndex(type,gene) && ! SSJoin(type,expressesProtein

°The Shredded Ontology — 4

- The keyword index

. Simple inverted index of all string-valued literals

- Support partial string matches and regular
expressions on strings

- Distinguish between class nodes, edge labels and
instance nodes

Keyword Queries using the Ontology

. Classify keywords
- Find LCA concepts of a conjunctive query

- Find if specific distinguished classes appear in queries
« “Alzheimer’s” subclass-of Disease

. Apply Class-specific expansion rules

- For items classified as anatomical object get part-of descendants, not
including the cell module

- For items classified as cell, get subclasses, by executing property chains
if needed

- property chain is a new edge-label, defined using a positive, non-recursive first
order rule

- Find data in sources using expanded query
- Ontological relationships

 Find up to k-distance paths amongst pairs of hot keywords in
conjunctive queries

- Find data source elements that are mapped to these relationships
- Rank Results??

Querying the Ontology

. Extending the TERP query language (Sirin et al)

- TERP is a syntactic enhancement of the SPARQL

« Our extensions allow
- transitive operations and path expressions on edges

- graph output
SELECT ?diseaseProcess
WHERE {
?diseaseProcess rdfs:subClassOf+ (:degenerativeProcess and
:actsSpecificallyOn some ?muscle) .
(?muscle :isSolidDivisionOf+
(:subClassOf+ cardiacMuscle))

Query Planning within OntoQuest

- Rewrite the where clause using intermediate

variables

WHERE {
?diseaseProcess rdfs:subClassOf+ ?a .
?a intersectionOf (:degenerativeProcess, ?b) .
?b onProperty :actsSpecificallyOn .
?b owl:someValuesFrom ?muscle .
?muscle :isSolidDivisionOf+ ?c .
?c rdfs:subClassOf+ :cardiacMuscle

}

degenerativeProcess isSolidDivisianOf+

/,, ?C AN

M I

") N
_- 7 2 AN
g cardiacMuscle
actsSpecificallyOn

o S— —

Query Planning within OntoQuest

- Some semantic rewrites (what are all the rewrite

rules ?) degenerativeProcess isSolidDivisianOf+

el vV
4
o
’ N\

M

’,/7 ?a ?m \\\\4
dp 7 / cardiacMuscle
actsSpecificallyOn

?b
U

degenerativeProcess

-~
S~

sdp 7 cardiacMuscle
RREN actsSpecificallyOn

Query Planning and Optimization

. Some standard rewrites

- Map GRAPH IRl GroupGraphPattern to Graph(IRI,
GroupGraphPattern)

- Map all graph patterns contained in a group to
produce a list, SP, of algebra expressions

« For example
« fori:=0; i< length(SP); i++
. If SP[i] is an OPTIONAL,
If SP[i] is of the form OPTIONAL(Filter(F, A))
G := LeftJoin(G, A, F)
else
G := Leftloin(G , A, true)
- Otherwise for expression SPJi], G :=Join(G, SP[i])

Selectivity

- Basic Graph Patterns are planned by selectivity estimates

n Bound Variables Operation Type

propl, prop2, obj SSJoin High

propl, prop2, obj SQOJoin Very high

High
propl, prop2 SOJoin, OO0Join or SSJoin Medium
Sub, obj SOSelect High
Sub, prop PSSelect High
Prop, obj PSSelect High

prop Union(PSSelect), Union(POSelect) Very Low

sub Union(PSSelect), Union(SOSelect) Low

obj Union(POSelect), Union(SOSelect) Low
Prop+, obj DAG_descendants High

Prop+, sub DAG_ancestors Medium
keyword

propl, sub, prop2 OOlJoin

Kw_search High

Query Plan Example

- Query

isSolidDivisionOf+
/ N2

At N

2dp j oM
actsSpecificallyOn

- isSoJ'Ld BivisionOf+

I
/’\. - b

N\
/
tsSpecificallyOn

?c = DAG_descendants('rdfs:subClassOf', kw-index(:cardiacMuscle));
?muscle = DAG_descendants(':isSolidDivisionOf', ?c);

?b = POSelect(?b kw_index(:actsSpecificallyOn) to_bitmap(?muscle));
?al= AND (:dP, ?b);

?a2=BITMAP_AND (sojoin(sc+, sc+), to_bitmap(dag_desc(sc, :dP)))

?a = ?al union ?a2
?diseaseProcess = DAG_descendants('rdfs:subClassOf', ?a).

OntoQuest Performance -1

- Data set 1: NIFSTD ontology
- # of Nodes: 467,848, # of Nodes in the subClassOf

DA 45 & NTtal # or descendan s

Avg. time for getDescendants 12.21

1866
(203,222 results)

Max. time for getDescendants

Avg. time to get paths between 2 nodes 28
Avg. time to get all paths to a node through k given nodes 190

Given an unordered list of nodes, find the paths

connecting all of them 210

Time for SSJoin, SOJoin, OOJoin over 66,564 p-p pairs

(bitmap returned) 644, 456, 468 resp.

Time for SSJoin, SOJoin, OOJoin over 66,564 p-p pairs

(Node IDs returned) 977, 593, 480 resp.

OntoQuest Performance — 2

SELECT ?structure
WHERE {
?structure rdfs:subClassOf ?01.
?01 owl:intersectionOf (:SolidStructure
?a2 ?a3).
?a2 owl:onProperty :isStructuralComponentOf .
?a2 owl:someValuesFrom :Leg .
?a3 owl:onProperty :isPairedOrUnpaired

?a3 owl:someValuesFrom :atLeastPaired

}

SELECT ?structure 1450 tuples

WHERE { _
?structure rdfs:subClassOf+ :SolidStructure } 173(On|y node IdS?
336(all node properties)

SELECT ?structure _
WHERE { 209 (only node ids)
?structure rdfs:subClassOf+ (:SolidStructure and 211(a|| hode properties)
:Duct). }

What degenerative diseases affect some cardiac 206(only node ids)
muscle?

207 (all node properties)

Next Steps in our Research

- Exploring an extended version of neo4j as the
graph representation

- Combining with a BSP style computation
engine

- Developing architecture-aware optimization
rules

	Management of Stream and Graph Data
	Prologue
	Examples of New Models
	STREAM DATA
	Slide Number 5
	A Slightly Modified Version of 8 Rules
	What makes streams different?
	DBMS vs. DSMS
	A Data Model for Streams
	A Stream (Event) Processor
	Windowing
	Window-based Selection (Esper)
	Slide Number 13
	Output Control
	Output Control
	Output Control
	Output Control
	Window-Based Stream Partitioning
	Pattern Specification
	Toward a Distributed DSMS for Large, High Velocity Data
	Two Recent Distributed Stream Platforms
	The Distributed Setting for Storm/Trident
	Slide Number 23
	Zookeeper Guarantees
	Storm and Zookeeper
	The Storm Computing Model
	A Simple Non-trivial Example
	Input and Output
	The Computation Scheme
	Trident Topology
	Trident Topologies
	Trident Topology
	Trident Abstractions
	Trident Topology
	Computing Aggregates
	Trident States
	Trident PersistentAggregates
	An Example
	Trident Topology
	Monitoring Energy Use
	Social Life Networks
	GRAPH DATA
	What Do You Mean “Graphs”?
	Oh! You mean Networks!!
	A Real-World “Business” Problem
	A Real-World Science Problem
	Why is a Graph a “Natural Model” for these problems?
	Why is a Graph a “Natural Model” for these problems?
	Why is a Graph a “Natural Model” for these problems?
	A Real-World “Business” Problem
	Graph Functionality needed
	Representation and Storage
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Representation and Storage
	Slide Number 60
	Slide Number 61
	Graphs and Bitmaps
	Slide Number 63
	Graph Computation
	BSP Example
	GPS – Stanford’s Graph Computation System
	Query Operations over Graphs
	Slide Number 68
	Query Database in Dex
	Query Database in Dex
	Our research – Operating on Ontology Graphs
	The Shredded Ontology - 1
	The Shredded Ontology – 2
	The Shredded Ontology – 3
	The Shredded Ontology – 4
	Keyword Queries using the Ontology
	Querying the Ontology
	Query Planning within OntoQuest
	Query Planning within OntoQuest
	Query Planning and Optimization
	Selectivity
	Query Plan Example
	OntoQuest Performance – 1
	OntoQuest Performance – 2
	Next Steps in our Research

