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• Two trends in developing “new model” data management 
systems 

• How to build on top of existing data management systems 
• For example, how to represent tree-structured data (documents, XML, …) in 

a relational system 

• Using relational storage 

• Minimally extending the data operator set to accommodate the properties of 

the new model 

• How to build a “native” system that 
• Exploits the properties of the new model 

• Develops new and efficient algorithms for “natural” operators of the model 

• Often, as technology matures, output of the second category is 
adapted/co-opted into traditional systems 

Prologue 



• Structure-based Models 
• Multidimensional arrays 

• Started in mid-90s, now carried out under SciDB and related efforts 

• Graph data 

• Started in the 80s, now flourishing in industry, open source communities and academia 

• Quality-based Models 
• Uncertain data 

• Started in the mid-80s as probabilistic relational model, now regaining importance due 

to quality and trust issues 

• Data Property-based Models 
• Streaming data 

• Started with messaging systems, now growing in industry, open source communities 

and academia 

Examples of New Models 



STREAM DATA 





• Rule 1: Keep the Data Moving 
(straight-through architecture, 
no-store, no-poll) 

• Rule 2: Query using SQL on 
Streams (use a familiar query 
language) 

• Rule 3: Handle Stream 
Imperfections (Delayed, 
Missing and Out-of-Order 
Data)  

• Rule 4: Generate Predictable 
(deterministic) Outcomes i.e., 

  respect order while processing 
• Rule 5: Integrate Stored and 

Streaming Data 
• Rule 6: Guarantee Data Safety 

and Availability (must be 
available with integrity at all 
times). Use hot backup, and 
real-time failover 

• Rule 7: Partition and Scale 
Applications Automatically 
(elasticity) 

• Rule 8: Process and Respond 
Instantaneously (low latency) 

A Slightly Modified Version of 8 Rules 



• In a traditional DBMS 
• Data is stored – it can be very large, but it is finite at any time 

• Queries come at random – once a query is answered, it is not persisted 

• In a data stream management system (DSMS) 
• The data keeps coming continuously, i.e., the data is infinite 

• Any piece of data is available for processing for a short time 

• Queries are registered and are often “standing” (or continuous) 

• Often the results are expected to be (near) real-time   

• Scientific examples 
• Data from sensor networks (including mobile applications) 

• Social network data (including participatory sensing) 

• Data from communication systems 

What makes streams different? 



 

DBMS vs. DSMS 

In many applications, streaming data must be processed along with stored data 



• A stream S is a (possibly) infinite bag (multiset) of elements 
<s,τ> where s is a tuple belonging to the schema of S and τ is the 

  timestamp of the element 
• Example: Traffic Data from California Dept. of Transportation 

http://pems.dot.ca.gov/ (data every 30 sec.) 

A Data Model for Streams 

Name Comment Units 
Timestamp Sample time as reported by the field element as MM/DD/YYYY HH24:MI:SS.   
Station Unique station identifier. Use this value to cross-reference with Metadata files.   
Lane N Flow Number of vehicle that passed over the detector during the sample period. N 

ranges from 1 to the number of lanes at the location. 
Veh/Sampl
e Period 

Lane N 
Occupancy 

Occupancy of the lane during the sample period expressed as a decimal number 
between 0 and 1. N ranges from 1 to the number of lanes at the location. 

% 

Lane N Speed Speed as measured by the detector. Empty if the detector does not report speed. 
N ranges from 1 to the number of lanes at the location. 

Mph 

http://pems.dot.ca.gov/


• The basic model 
• ordered tuples, often with an explicit timestamp 

• Declaring an event/stream 
    Esper (in-memory processor, available from http://esper.codehaus.org/ )  

Create schema LaneFlow(laneNum int, Flow int, Occupancy int, Speed float) 

Create schema trafficData as (tStamp long, stationID int, LaneFlow[]) 

 starttimestamp tStamp 

   StreamBase (allows stream persistence, available from http://streambase.com) 
      Create schema trafficData as (tStamp long, stationID int, laneNum int, Flow int, Occupancy int,    

                                                             Speed float) 

       Create input stream trafficStream  trafficData 

A Stream (Event) Processor 



• We cannot create blocking operations on streams 
• But we want to compute joins and aggregate functions like count, average 

• We create windows on streams 
• Within a window we can consider the data to be a snapshot relation and 

perform table-like operations on it 
• Then we get the next block of data by moving the window 

• Types of window 
• How to shift  

• Sliding: move window on k ticks/time continuously or in blocks 
• Tumbling: create new window every k time-ticks or W size 

• How to construct a block 
• By time: window contains tuples within a certain time range, size varies with 

data rate 
• By size: at any time window contains a fixed amount of items, new data 

displaces old 

Windowing 



 

•Window-based Selection (Esper) 
select * from MyStream.win:length(5) select * from MyStream 

Receives updated data as soon as  
it is processed for the statement 



 

select * from MyStream(amount>=200).win:length(5) 

select * from MyStream.win:length(5) where amount >200  

select * from MyStream.win:time(4sec) 

select * from MyStream.win:time_batch(4sec) 



Time Value Input Stream Remove Stream 

0.2 W1 W1 

0.8 W2 W2 

1.0 

1.2 

1.5 W3, W4 W3, W4 

2.0 

2.1 W5 W5 

2.2 

2.5 

3.0 

3.2 

3.5 W6 W6 

4.0 

4.3 W7 W7 

4.9 W8 W8 

5.0 

5.2 

5.7 W1 

5.9 W9 W9 

6.0 

6.2 

6.3 W2 

7.0 W3, W4 

7.2 

Output Control 

select irstream value from 
MyStream.win:time(5.5 sec) 



Time Value Input Stream Remove Stream 
0.2 W1 
0.8 W2 
1.0 
1.2 W1, W2 
1.5 W3, W4 
2.0 
2.1 W5 
2.2 W3, W4, W5 
2.5 
3.0 
3.2 null 
3.5 W6 
4.0 
4.2 W6 
4.3 W7 
4.9 W8 
5.0 
5.2 W7, W8 
5.7 
5.9 W9 
6.0 
6.2 W9 W1 
6.3 
7.0 
7.2 Null W2, W3, W4 

Output Control 

select irstream value from 
MyStream.win:time(5.5 sec) 
output every 1 seconds 



Time Value Input Stream Remove Stream 
0.2 W1 
0.8 W2 
1.0 
1.2 W2 
1.5 W3, W4 
2.0 
2.1 W5 
2.2 W5 
2.5 
3.0 
3.2 null 
3.5 W6 
4.0 
4.2 W6 
4.3 W7 
4.9 W8 
5.0 
5.2 W8 
5.7 
5.9 W9 
6.0 
6.2 W9 W1 
6.3 
7.0 
7.2 W4 

Output Control 

select irstream value from 
MyStream.win:time(5.5 sec) 
output last every 1 seconds 



Time Value Input Stream Remove Stream 
0.2 W1 
0.8 W2 
1.0 
1.2 W1, W2 
1.5 W3, W4 
2.0 
2.1 W5 
2.2 W1, W2, W3, W4, W5 
2.5 
3.0 
3.2 W1, W2, W3, W4, W5 
3.5 W6 
4.0 
4.2 W1, W2, W3, W4, W5, W6 
4.3 W7 
4.9 W8 
5.0 
5.2 W1, W2, W3, W4, W5, W6, 

W7, W8 
5.7 
5.9 W9 
6.0 
6.2 W2, W3, W4, W5, W6, W7, 

W8, W9 
6.3 
7.0 
7.2 W5, W6, W7, W8, W9 

Output Control 

select irstream value from 
MyStream.win:time(5.5 sec) 
output snapshot every 1 seconds 



StreamBase 
 

CREATE OUTPUT STREAM TrafficStats AS  
SELECT openval() AS StartOfTimeSlice,  
avg(Occupancy) AS AvgCarsPerSecond,  
stdev(Occupancy) AS StdevCarsPerSecond,  
lastval(Occupancy) AS LastCarsPerSecond,  
StationNum  
FROM trafficStream [SIZE 20 ADVANCE 1 ON  
            StartOfTimeSlice PARTITION BY     
             StationNum]  
GROUP BY StationNum; 

Esper 
 
CREATE CONTEXT  TrafficPerStation 
         PARTITION BY StationNum from 
trafficStream 
 
       CONTEXT TrafficPerStation 
       SELECT timestamp, 
           avg(Occupancy) AS AvgCarsPerSecond,        
           stdev(Occupancy) AS StdevCarsPerSecond,   
           lastval(Occupancy) AS LastCarsPerSecond,  
      FROM trafficStream.win:length(20) 

Window-Based Stream Partitioning 



Streambase 
 SELECT A.id AS fi, C.id AS fo  

 FROM PATTERN A  !B  C WITHIN 5 TIME  

 WHERE B.id == A.id  

 INTO out; 

Esper 
 select a.custId, sum(a.price + b.price)  

 from pattern  

  [every a=ServiceOrder  b=ProductOrder(custId = a.custId) 
   where timer:within(1 min)].win:time(2 hour)  

 where a.name in ('Repair', b.name)  

 group by a.custId  

 having sum(a.price + b.price) > 100 

 

Pattern Specification 



• Goals 
• Guaranteed data processing 
• Fault tolerance 
• Horizontal scalability 
• Allows one to use a high‐level programming language 

Toward a Distributed DSMS for Large, High 
Velocity Data 



 

Two Recent Distributed Stream Platforms 



 

The Distributed Setting for Storm/Trident 



 

 



• Sequential Consistency: Updates from a client will be applied in 
the order that they were sent. 
 

• Atomicity: Updates either succeed or fail. 
 

• Single System Image: A client will see the same view of the 
service regardless of the server that it connects to. 
 

• Reliability: Once an update has been applied, it will persist from 
that time forward until a client overwrites the update. 
 

• Timeliness: The clients view of the system is guaranteed to be up-
to-date within a certain time bound. 

 

Zookeeper Guarantees 



• Storm uses Zookeeper for 
• Discovery of nodes 
• Storing the state of Nimbus and Supervisor processes 
• Guaranteed message processing and tracking 
• Storing statistics 

• The actual heavy lifting (i.e., internode 
communication)  uses a library called zero MQ 

•Storm and Zookeeper 



• Spouts: A spout is a source of streams. For example, a spout may read tuples off of a 
Kestrel queue and emit them as a stream. Or a spout may connect to the Twitter API 
and emit a stream of tweets. 

• Bolts: A bolt consumes any number of input streams, does some processing, and 
possibly emits new streams. Complex stream transformations, require multiple steps 
and thus multiple bolts. Bolts can do anything from run functions, filter tuples, do 
streaming aggregations, do streaming joins, talk to databases, and more. 

• Topology: A topology is a graph of stream transformations where each node is a 
spout or bolt. Edges in the graph indicate which bolts are subscribing to which 
streams. When a spout or bolt emits a tuple to a stream, it sends the tuple to every 
bolt that subscribed to that stream. 

The Storm Computing Model 



• Scenario 
•  There is a building with a number of rooms. There are a bunch of 

people wearing sensors going into and coming out of rooms. Every time 
some one enters and leaves, the sensors emit data giving out that 
information with a timestamp. 

• Goal: create an occupancy timeline for each room. 
• Data schema: (eventType, userID, timeStamp, roomID, dataID, corrID) 

• Events are not guaranteed to respect chronological order  

•A Simple Non-trivial Example 
Credit: Svend Vanderveken 
 



• What comes in 
 
 
 
 
 
 
 

• What the system should produce 

•Input and Output 

{"eventType": "ENTER", "userId": "John_5", "time": 1374922058918, "roomId": "Cafetaria", "id": 
"bf499c0bd09856e7e0f68271336103e0A", "corrId": "bf499c0bd09856e7e0f68271336103e0"} 
{"eventType": "ENTER", "userId": "Zoe_15", "time": 1374915978294, "roomId": "Conf1", "id": 
"3051649a933a5ca5aeff0d951aa44994A", "corrId": "3051649a933a5ca5aeff0d951aa44994"} 
{"eventType": "LEAVE", "userId": "Jenny_6", "time": 1374934783522, "roomId": "Conf1", "id": 
"6abb451d45061968d9ca01b984445ee8B", "corrId": "6abb451d45061968d9ca01b984445ee8"} 
{"eventType": "ENTER", "userId": "Zoe_12", "time": 1374921990623, "roomId": "Hall", "id": 
"86a691490fff3fd4d805dce39f832b31A", "corrId": "86a691490fff3fd4d805dce39f832b31"} 
{"eventType": "LEAVE", "userId": "Marie_11", "time": 1374927215277, "roomId": "Conf1", "id": 
"837e05916349b42bc4c5f65c0b2bca9dB", "corrId": "837e05916349b42bc4c5f65c0b2bca9d"} 
{"eventType": "ENTER", "userId": "Robert_8", "time": 1374911746598, "roomId": "Annex1", "id": 
"c461a50e236cb5b4d6b2f45d1de5cbb5A", "corrId": "c461a50e236cb5b4d6b2f45d1de5cbb5"} 
 

{"roomId":"Cafetaria","sliceStartMillis":1374926400000,"occupancies":[11,12,12,12,13,15,15,14,1  

An intermediate output 



The Computation Scheme 



• Read input events in JSON 
 
 
 

• Gather "enter" and "leave" events into "presence periods" 
 
 
 
 

• Build room timelines 

Goal: build a minute-by-minute occupancy timeline of each room 
Trident Topology 

TridentTopology topology = new TridentTopology(); 
 
topology 
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))  
.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent")) 

.each(new Fields("occupancyEvent"), new ExtractCorrelationId(), new Fields("correlationId")) 

.groupBy(new Fields("correlationId")) 

.persistentAggregate( PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new PeriodBuilder(), 
new Fields("presencePeriod")) 
.newValuesStream() 

.each(new Fields("presencePeriod"), new IsPeriodComplete()) 

.each(new Fields("presencePeriod"), new BuildHourlyUpdateInfo(), new Fields("roomId", "roundStartTim  

.groupBy(new Fields("roomId", "roundStartTime")) 

.persistentAggregate( TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomId", "roundSta   
  new TimelineUpdater(), new Fields("hourlyTimeline")); 



• Trident topologies compile down into as efficient of a Storm 
topology as possible. Tuples are only sent over the network 
when a repartitioning of the data is required, such as if you do a 
groupBy 

Trident Topologies 



• Read input events in JSON 
 
 
 

• Gather "enter" and "leave" events into "presence periods" 
 
 
 
 

• Build room timelines 

Goal: build a minute-by-minute occupancy timeline of each room 
Trident Topology 

TridentTopology topology = new TridentTopology(); 
 
topology 
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))  
.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent")) 

.each(new Fields("occupancyEvent"), new ExtractCorrelationId(), new Fields("correlationId")) 

.groupBy(new Fields("correlationId")) 

.persistentAggregate( PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new PeriodBuilder(), 
new Fields("presencePeriod")) 
.newValuesStream() 

.each(new Fields("presencePeriod"), new IsPeriodComplete()) 

.each(new Fields("presencePeriod"), new BuildHourlyUpdateInfo(), new Fields("roomId", "roundStartTim  

.groupBy(new Fields("roomId", "roundStartTime")) 

.persistentAggregate( TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomId", "roundSta   
  new TimelineUpdater(), new Fields("hourlyTimeline")); 



• Fields and Tuples  
• Suppose there is a stream stream(x, y, z) 

• stream.each(new Fields("y"), new MyFilter()) 
• public class MyFilter extends BaseFilter {  

• public boolean isKeep(TridentTuple tuple)  

• { return tuple.getInteger(0) < 10; }  

• } 
• stream.each(new Fields("x", "y"), new AddAndMultiply(), new 

Fields("added", "multiplied"));  
• public class AddAndMultiply extends BaseFunction {  

• public  void execute(TridentTuple tuple, TridentCollector collector)  

•    { int i1 = tuple.getInteger(0);  

•      int i2 = tuple.getInteger(1);  

• collector.emit(new Values(i1 + i2, i1 * i2)); } 

 } 

 

Trident Abstractions 
Tuples are internally processed in batches 



• Read input events in JSON 
 
 
 

• Gather "enter" and "leave" events into "presence periods" 
 
 
 

Goal: build a minute-by-minute occupancy timeline of each room 
Trident Topology 

TridentTopology topology = new TridentTopology(); 
 
topology 
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))  
.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent")) 

.each(new Fields("occupancyEvent"), new ExtractCorrelationId(), new Fields("correlationId")) 

.groupBy(new Fields("correlationId")) 

.persistentAggregate( PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new 
PeriodBuilder(), new Fields("presencePeriod")) 
.newValuesStream() 

.each(new Fields("presencePeriod"), new IsPeriodComplete()) 

.each(new Fields("presencePeriod"), new BuildHourlyUpdateInfo(), new Fields("roomId", 
"roundStartTime")) 
.groupBy(new Fields("roomId", "roundStartTime")) 
.persistentAggregate( TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomId", 
"roundStartTime"),  
  new TimelineUpdater(), new Fields("hourlyTimeline")); 

 Build room timelines 



• Suppose we have a stream with fields val1 and val2 
• stream.aggregate(new Fields("val2"), new Sum(), new Fields("sum"))  

• The output stream would only contain a single tuple with a single field 
called "sum", representing the sum of all "val2" fields in that batch. 

• stream.groupBy(new Fields("val1")) .aggregate(new Fields("val2"), new 
Sum(), new Fields("sum")) 

• the output will contain the grouping fields followed by the fields emitted by 
the aggregator 

• the output will contain the fields "val1" and "sum" 

•   

Computing Aggregates 



• State: content of the data at any instant 
• Sometimes we want to do state updates (e.g., an external databases) so 

that it's like each message was only processed only once 
• Trident solves this problem by doing two things: 

• Each batch is given a unique id called the "transaction id". If a batch is 
retried it will have the exact same transaction id. 

• State updates are ordered among batches. That is, the state updates for 
batch 3 won't be applied until the state updates for batch 2 have 
succeeded. 

 

Trident States 



• persistentAggregate is an additional abstraction that  
• takes a Trident aggregator  
• uses it to apply updates to the source of state 
• The programmer implements the "MapState" interface  

• The grouping fields will be the keys in the state, and the aggregation result 
will be the values in the state. 

• public interface MapState<T> extends State{  

• List<T>multiGet(List<List<Object>> keys);  

• List<T>multiUpdate(List<List<Object>> keys, List<ValueUpdater> updaters);  

• void multiPut(List<List<Object>> keys, List<T> vals); } 

Trident PersistentAggregates 



An Example 

 



• Read input events in JSON 
 
 
 

• Gather "enter" and "leave" events into "presence periods" 
 
 
 

Goal: build a minute-by-minute occupancy timeline of each room 
Trident Topology 

TridentTopology topology = new TridentTopology(); 
 
topology 
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))  
.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent")) 

.each(new Fields("occupancyEvent"), new ExtractCorrelationId(), new Fields("correlationId")) 

.groupBy(new Fields("correlationId")) 

.persistentAggregate( PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new PeriodBuilder(), 
new Fields("presencePeriod")) 
.newValuesStream() 

.each(new Fields("presencePeriod"), new IsPeriodComplete()) 

.each(new Fields("presencePeriod"), new BuildHourlyUpdateInfo(), new Fields("roomId", 
"roundStartTime")) 
.groupBy(new Fields("roomId", "roundStartTime")) 
.persistentAggregate( TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomId", 
"roundStartTime"),  
  new TimelineUpdater(), new Fields("hourlyTimeline")); 

 Build room timelines 



• At SDSC, we are evaluating this framework for an application 
called BuildingDepot 
 

Monitoring Energy Use 

Monitoring and Control of Energy Use in Buildings 
• Instrumenting more buildings with newer sensors and actuators 
• 80k sensor streams now,  will increase to 500k soon 
• Using more spatial knowledge for effective predictive analysis 

Courtesy: Yuvraj Agarwal  



 

•Social Life Networks 



GRAPH DATA 



What Do You Mean “Graphs”? 



• In this graph 
• Edges are 

directional 
• There are no 

edge weights 
• Nodes do not 

have their 
own types 

• There are no 
self loops 

• No logical 
constraints  

Oh! You mean Networks!! 

Node/ 
vertex 

Edge 

Node 
Properties 

Edge Properties 

Edge Property Type 



• Who should be on my board of advisors? 
• I already have A, B, C and D and need two more people who should 

• Have name recognition in their fields, which should be “around” Computer 
Science 

• Should have reasonably high visibility 

• Should be known to at least two of my current members 

• Should get along with C 

• Have a lot of “business connections” 

• Be independently wealthy, and if possible, an entrepreneur  

• Not be involved in any recent negative press 

A Real-World “Business” Problem 



• What are potential pharmaceutical compounds C which are 
potentially useful for orphan disease D? 

• These compounds should satisfy the following properties 
• They are not yet applied to D  

• They are not in the FDA approval pipeline for D 

• They have been applied to humans and model organisms 

• They operate on genes products in pathways that are relevant 

• Because these pathways are related to some phenotypes exhibited by D in 

humans or model organisms 

• They have not been identified as toxins for any target related to human 
health 

 

A Real-World Science Problem 



• Structurally, most data models can be viewed as graphs 
• Does not mean they should be 
• Relation R(A,B,C), pk(A) – with tuple r1(1,2,3) can become 

• R—attribA, R—attribB, R—attribC, R—pkA 

• r1—instanceOfR 

• r 1–A1, r1—B2, r1—C3 

• XML (without idRef) is modeled as an edge-labeled tree, therefore it is a 
graph 

Why is a Graph a “Natural Model” for 
these problems? 



• How about text? 
• Parsegraphs 

 

Why is a Graph a “Natural Model” for 
these problems? 

S 

NP VP 

NP CC NP 

NN NNS 

ABeta Peptides and/or 

NN NNS 

ABeta deposits 

JJ 

extracellular 

NP 

NN NNS 

alpha-syn aggregation 

JJ 

intracellular 

VP 

VB 

promote 

MD 

may 

ADVP 

… 

nsubj 

nn dobj nn 

amod 

group1 

start end 
group2 

start end 

ARG1 

ARG2 



• Ontologies are graphs (with rules) 
• Social Interactions are graphs 

 
• Therefore regardless of whether 

data are “born” as graphs, they can 
be abstracted as graphs 

• This makes graphs a uniquely 
positioned data model for 
heterogeneous information 
integration 

• However, these graphs may have 
different semantics that need to be 
accounted for 

Why is a Graph a “Natural Model” for 
these problems? 



• Who should be on my board of advisors? 

• I already have A, B, C and D and need two more people who should 

• Have name recognition in their fields,  

• which should be “around” Computer Science 

• Should have reasonably high visibility 

• Should be known to at least two of my current members 

• Should get along with C  

• Have a lot of “business connections” 

• Be independently wealthy, and if possible, an entrepreneur  

• Not be involved in any recent negative press 

A Real-World “Business” Problem 

Query DBPedia graph for subjects  and areas 
related to CS, authors from DBLP to get pub 
venues and authors 

Query their citation networks to compute h-index variants 

Web pages (journals, conf., 
research labs …) to find 
“important positions” 

Co-presence graphs 

Linked-In Connections 

Text Analysis 

Ask C 

Linked-In Profile, 
Services sold by banks 



• Storage, of course 
• Computation with graphs 

• For example, finding centrality measures 

• Retrieval 
• Conditional traversals, query pattern matching 

• Manipulations 
• Intersections, joins 

• Mining 
• Finding k most frequently referred entities over a set of entity-mapped graphs in a 

given context 

• Finding frequent structural patterns 

• Ranking over paths 
• Is this connection (i.e., path) between two members more important than that? 

Graph Functionality needed 



• Somewhat dependent on the intended functionality 
• Neo4j – a traversal-centric system 

Representation and Storage 



 

 



 

 



 

 



 

 



 

 



 

 



 

Dex: A Retrieval-Centric Storage Model 
Representation and Storage 



 

 



 

 



• A Graph 
 
 
 
 

• A bitmap-based representation 

Graphs and Bitmaps 



 

 



• Computing properties of nodes that are based on  
• the structure/content of the graph 

• evolving structure/content of the graph 

• Often uses adjacency matrices 

• Many of these computations are iterative which eventually converge 
• Classical MapReduce-based computations are not iterative 

• Systems like Mesos and Spark are trying to modify these computations to 
allow iterative algorithms that pass data from iteration to iteration 

• Harder for large graphs if they don’t remain in memory  

• This led to the development of Bulk Synchronous Graph Processing 
algorithms 

• Google’s Pregel 

Graph Computation 



 

BSP Example 



• Some interesting decisions 
• GPS includes an optimization called LALP (large adjacency list partitioning) 

where adjacency lists of high-degree vertices are partitioned across 
workers 

• This optimization can improve performance, but only for algorithms with two 
properties: 

• Vertices use their adjacency lists (outgoing neighbors) only to send messages and 

not for computation 

• If a vertex sends a message, it sends the same message to all of its outgoing 

neighbors 

• Dynamic Repartitioning 
• Reassign certain vertices to other workers dynamically during algorithm 

computation 

 

GPS – Stanford’s Graph Computation System 



 

Neo4j 
•Query Operations over Graphs 
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http://www.sparsity-technologies.com 

Query Database in Dex 

… 
DbGraph dbg = s.getDbGraph(); 
Objects persons = dbg.select(person); 
Objects.Iterator it = persons.iterator(); 
while (it.hasNext()) { 
 long p = it.next(); 
 String name = dbg.getAttribute(p, 
name).toString(); 
} 
it.close(); 
persons.close(); 
… 
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Query Database in Dex 

… 
Objects objs1 = dbg.select(when, >=, 5pm); 
// objs1 = { e5, e6 } 
Objects objs2 = dbg.explode(p1, phones, OUT); 
// objs2 = { e4, e5 } 
Objects objs = objs1.intersection(objs2); 
// objs = { e5, e6 } ∩ { e4, e5 } = { e5 } 
… 
objs.close(); 
objs1.close(); 
objs2.close(); 
… 
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OUR RESEARCH – OPERATING ON 
ONTOLOGY GRAPHS 



The Shredded Ontology - 1 

• The reified triples 
 
 
 
 
 

<owl:Class rdf:ID="Wine">  
  <rdfs:subClassOf rdf:resource="&food;PotableLiquid" /> 
  <rdfs:subClassOf>  
       <owl:Restriction>  
   <owl:onProperty rdf:resource="#hasMaker" />  
   <owl:someValuesFrom rdf:resource="#Winery" />  
       </owl:Restriction>  
   </rdfs:subClassOf>  
</owl:Class> 

<Wine>   rdf:type            owl:Class 
<Wine>   rdfs:subClassOf     food:PotableLiquid 
<Wine>   <hasMaker>          <Winery> 
<Wine>   rdfs:subClassOf     <something [exists] hasMaker Winery> 
<something [exists]hasMaker Winery> rdf:type           owl:Restriction 
<something [exists]hasMaker Winery> owl:onProperty     <hasMaker>  
<something [exists]hasMaker Winery> owl:someValuesFrom <Winery> 
 
 

Wine ⊑ food:PortableLiquid 
Wine ⊑ ∃ hasMaker.Winery 

Syntax-based triples 

Locally inferred triples 



The Shredded Ontology – 2  

• The DAG Indexes 
• One per transitive relationship, one per subproperty 

tree 
• Modified SSPI 

• Index the embedded tree and non-tree portions separately 
• Embedded tree has a Dewey index 
• Non-tree edges is maintained in a “minimal” skeleton structure to 

connect them to nearest ancestors 

• Statistics is kept at nodes to perform limited-depth 
queries 

• Complex, multi-reachability patterns still a problem 
• It is wiser to treat “hub nodes” specially 

DAGs for  
transitive relationships 

part-of, continuous-with, member-of 
sub-property relationships 

volumetric-part-of <sp proper-part-of  <sp part-of 

c1 

b1 e2 

a1 

m1 

e1 

c4 p1 

c2 

m2 

{c2, a1} 
{c4} 
{a1} 
{a1} 

b1 
a1 
e2 
m2 

preds nid 



The Shredded Ontology – 3  

• Bitmap Indices 
• Derived from RDF triples 

 PSIndex Property Subject Objects (bitmap) 

POIndex Property Object Subjects (bitmap) 

SOIndex Subject Object Properties(bitmap) 

SSJIndex Property Property Subjects (bitmap) (S,P1,O1),(S,P2,O2) 

SOJIndex Property Property Subjects (bitmap) (X,P1,O),(S,P2,X) 

OOJIndex Property Property Objects (bitmap) (S1,P1,O),(S2,P1,O) 

 Using the Bitmap Indices 
 Select genes that have no associated proteins 

 POIndex(type,gene) && ! SSJoin(type,expressesProtein) 



•The Shredded Ontology – 4 

• The keyword index 
• Simple inverted index of all string-valued literals 
• Support partial string matches and regular 

expressions on strings 
• Distinguish between class nodes, edge labels and 

instance nodes 



Keyword Queries using the Ontology 

• Classify keywords 
• Find LCA concepts of a conjunctive query 
• Find if specific distinguished classes appear in queries 

• “Alzheimer’s” subclass-of Disease 
• Apply Class-specific expansion rules 

• For items classified as anatomical object get part-of descendants, not 
including the cell module 

• For items classified as cell, get subclasses, by executing property chains 
if needed 

• property chain is a new edge-label, defined using a positive, non-recursive first 
order rule 

• Find data in sources using expanded query 
• Ontological relationships 

• Find up to k-distance paths amongst pairs of hot keywords in 
conjunctive queries 

• Find data source elements that are mapped to these relationships 
• Rank Results?? 

 



Querying the Ontology  

• Extending the TERP query language (Sirin et al) 
• TERP is a syntactic enhancement of the SPARQL 

• Our extensions allow  
• transitive operations and path expressions on edges 
• graph output 

SELECT ?diseaseProcess 
WHERE { 
                ?diseaseProcess rdfs:subClassOf+ (:degenerativeProcess and 
     :actsSpecificallyOn some ?muscle) . 
     (?muscle :isSolidDivisionOf+  

     ( :subClassOf+ cardiacMuscle) ) 
} 



Query Planning within OntoQuest 

• Rewrite the where clause using  intermediate 
variables 

 
WHERE { 
 ?diseaseProcess rdfs:subClassOf+ ?a . 
 ?a intersectionOf (:degenerativeProcess, ?b) . 
 ?b onProperty :actsSpecificallyOn . 
 ?b owl:someValuesFrom ?muscle . 
 ?muscle :isSolidDivisionOf+ ?c . 
 ?c rdfs:subClassOf+ :cardiacMuscle 
} 

?dp 

?a 

degenerativeProcess 

?m 

cardiacMuscle 

?c 

actsSpecificallyOn 

isSolidDivisionOf+ 

∩ 

?b 



Query Planning within OntoQuest 

• Some semantic rewrites (what are all the rewrite 
rules?) 

?dp 

?a 

degenerativeProcess 

?m 

cardiacMuscle 

?c 

actsSpecificallyOn 

isSolidDivisionOf+ 

∩ 

?b 

?dp 

?a 

degenerativeProcess 

?m 

cardiacMuscle 

?c 

actsSpecificallyOn 

isSolidDivisionOf+ 

?b 

∪ 



Query Planning and Optimization 

• Some standard rewrites 
• Map GRAPH IRI GroupGraphPattern to Graph(IRI, 

GroupGraphPattern) 
• Map all graph patterns contained in a group to 

produce a list, SP, of algebra expressions 
• For example 

• for i := 0 ; i < length(SP); i++ 
•    If SP[i] is an OPTIONAL, 
•       If SP[i] is of the form OPTIONAL(Filter(F, A)) 
•            G := LeftJoin(G, A, F) 
•       else 
•            G := LeftJoin(G , A, true) 
•    Otherwise for expression SP[i], G := Join(G, SP[i]) 



Selectivity 

# Bound Variables Operation Type Selectivity 
1 prop1,  prop2,  obj SSJoin High 
2 prop1,  prop2,  obj SOJoin Very high 
3 prop1,  sub,  prop2 OOJoin High 
4 prop1,  prop2 SOJoin, OOJoin or SSJoin Medium 
5 Sub,  obj SOSelect High 
6 Sub, prop PSSelect High 
7 Prop, obj PSSelect High 
8 prop Union(PSSelect), Union(POSelect) Very Low 
9 sub Union(PSSelect), Union(SOSelect) Low 

10 obj Union(POSelect), Union(SOSelect) Low 
11 Prop+, obj DAG_descendants High 
12 Prop+, sub DAG_ancestors Medium 
13 keyword Kw_search High 

• Basic Graph Patterns are planned by selectivity estimates  

Next round should use statistics and a cost model  



Query Plan Example 

• Query 

?c = DAG_descendants('rdfs:subClassOf', kw-index(:cardiacMuscle)); 
?muscle = DAG_descendants(':isSolidDivisionOf', ?c); 
?b = POSelect(?b kw_index(:actsSpecificallyOn) to_bitmap(?muscle)); 
?a1= AND (:dP, ?b); 
?a2=BITMAP_AND (sojoin(sc+, sc+), to_bitmap(dag_desc(sc, :dP))) 
?a = ?a1 union ?a2 
?diseaseProcess = DAG_descendants('rdfs:subClassOf', ?a).  
 

?dp 

?a 

dp 

?m 
cM 

?c 

actsSpecificallyOn 

isSolidDivisionOf+ 

∩ 

?b 

?dp 
?a 

?dp 

?m 
cM 

?c 

actsSpecificallyOn 

isSolidDivisionOf+ 

?b 



OntoQuest Performance – 1 

• Data set 1: NIFSTD ontology  
• # of Nodes: 467,848,  # of Nodes in the subClassOf 

DAG: 45,882,  total # of descendant results: 
2,748,292 
 

Metric Time (in ms) 

Avg. time for getDescendants 12.21 

Max. time for getDescendants 1866  
(203,222 results) 

Avg. time to get paths between 2 nodes 28 

Avg. time to get all paths to a node through k given nodes 190 

Given an unordered list of nodes, find the paths 
connecting all of them 210 

Time for SSJoin, SOJoin, OOJoin over 66,564 p-p pairs 
(bitmap returned) 644, 456, 468 resp. 

Time for SSJoin, SOJoin, OOJoin over 66,564 p-p pairs 
(Node IDs returned) 977, 593, 480 resp. 



OntoQuest Performance – 2 
Query Time(ms) 

SELECT ?structure  
WHERE {  
      ?structure rdfs:subClassOf ?o1 . 
   ?o1 owl:intersectionOf (:SolidStructure 
?a2 ?a3) . 
      ?a2 owl:onProperty :isStructuralComponentOf . 
   ?a2 owl:someValuesFrom :Leg . 
   ?a3 owl:onProperty :isPairedOrUnpaired 
. 
   ?a3 owl:someValuesFrom :atLeastPaired 
   } 

175 

SELECT ?structure  
WHERE {  
      ?structure rdfs:subClassOf+ :SolidStructure } 

1450 tuples 
173(only node ids) 

336(all node properties) 
SELECT ?structure  
WHERE {  
      ?structure rdfs:subClassOf+ (:SolidStructure and  
                                   :Duct). } 

209 (only node ids) 
211(all node properties) 

What degenerative diseases affect some cardiac 
muscle? 

206(only node ids) 
207 (all node properties) 



Next Steps in our Research 

• Exploring an extended version of neo4j as the 
graph representation 

• Combining with a BSP style computation 
engine 

• Developing architecture-aware optimization 
rules 
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