
Management of Stream and Graph Data

Amarnath Gupta

• Two trends in developing “new model” data management
systems

• How to build on top of existing data management systems
• For example, how to represent tree-structured data (documents, XML, …) in

a relational system

• Using relational storage

• Minimally extending the data operator set to accommodate the properties of

the new model

• How to build a “native” system that
• Exploits the properties of the new model

• Develops new and efficient algorithms for “natural” operators of the model

• Often, as technology matures, output of the second category is
adapted/co-opted into traditional systems

Prologue

• Structure-based Models
• Multidimensional arrays

• Started in mid-90s, now carried out under SciDB and related efforts

• Graph data

• Started in the 80s, now flourishing in industry, open source communities and academia

• Quality-based Models
• Uncertain data

• Started in the mid-80s as probabilistic relational model, now regaining importance due

to quality and trust issues

• Data Property-based Models
• Streaming data

• Started with messaging systems, now growing in industry, open source communities

and academia

Examples of New Models

STREAM DATA

• Rule 1: Keep the Data Moving
(straight-through architecture,
no-store, no-poll)

• Rule 2: Query using SQL on
Streams (use a familiar query
language)

• Rule 3: Handle Stream
Imperfections (Delayed,
Missing and Out-of-Order
Data)

• Rule 4: Generate Predictable
(deterministic) Outcomes i.e.,

 respect order while processing
• Rule 5: Integrate Stored and

Streaming Data
• Rule 6: Guarantee Data Safety

and Availability (must be
available with integrity at all
times). Use hot backup, and
real-time failover

• Rule 7: Partition and Scale
Applications Automatically
(elasticity)

• Rule 8: Process and Respond
Instantaneously (low latency)

A Slightly Modified Version of 8 Rules

• In a traditional DBMS
• Data is stored – it can be very large, but it is finite at any time

• Queries come at random – once a query is answered, it is not persisted

• In a data stream management system (DSMS)
• The data keeps coming continuously, i.e., the data is infinite

• Any piece of data is available for processing for a short time

• Queries are registered and are often “standing” (or continuous)

• Often the results are expected to be (near) real-time

• Scientific examples
• Data from sensor networks (including mobile applications)

• Social network data (including participatory sensing)

• Data from communication systems

What makes streams different?

DBMS vs. DSMS

In many applications, streaming data must be processed along with stored data

• A stream S is a (possibly) infinite bag (multiset) of elements
<s,τ> where s is a tuple belonging to the schema of S and τ is the

 timestamp of the element
• Example: Traffic Data from California Dept. of Transportation

http://pems.dot.ca.gov/ (data every 30 sec.)

A Data Model for Streams

Name Comment Units
Timestamp Sample time as reported by the field element as MM/DD/YYYY HH24:MI:SS.
Station Unique station identifier. Use this value to cross-reference with Metadata files.
Lane N Flow Number of vehicle that passed over the detector during the sample period. N

ranges from 1 to the number of lanes at the location.
Veh/Sampl
e Period

Lane N
Occupancy

Occupancy of the lane during the sample period expressed as a decimal number
between 0 and 1. N ranges from 1 to the number of lanes at the location.

%

Lane N Speed Speed as measured by the detector. Empty if the detector does not report speed.
N ranges from 1 to the number of lanes at the location.

Mph

http://pems.dot.ca.gov/

• The basic model
• ordered tuples, often with an explicit timestamp

• Declaring an event/stream
 Esper (in-memory processor, available from http://esper.codehaus.org/)

Create schema LaneFlow(laneNum int, Flow int, Occupancy int, Speed float)

Create schema trafficData as (tStamp long, stationID int, LaneFlow[])

 starttimestamp tStamp

 StreamBase (allows stream persistence, available from http://streambase.com)
 Create schema trafficData as (tStamp long, stationID int, laneNum int, Flow int, Occupancy int,

 Speed float)

 Create input stream trafficStream trafficData

A Stream (Event) Processor

• We cannot create blocking operations on streams
• But we want to compute joins and aggregate functions like count, average

• We create windows on streams
• Within a window we can consider the data to be a snapshot relation and

perform table-like operations on it
• Then we get the next block of data by moving the window

• Types of window
• How to shift

• Sliding: move window on k ticks/time continuously or in blocks
• Tumbling: create new window every k time-ticks or W size

• How to construct a block
• By time: window contains tuples within a certain time range, size varies with

data rate
• By size: at any time window contains a fixed amount of items, new data

displaces old

Windowing

•Window-based Selection (Esper)
select * from MyStream.win:length(5) select * from MyStream

Receives updated data as soon as
it is processed for the statement

select * from MyStream(amount>=200).win:length(5)

select * from MyStream.win:length(5) where amount >200

select * from MyStream.win:time(4sec)

select * from MyStream.win:time_batch(4sec)

Time Value Input Stream Remove Stream

0.2 W1 W1

0.8 W2 W2

1.0

1.2

1.5 W3, W4 W3, W4

2.0

2.1 W5 W5

2.2

2.5

3.0

3.2

3.5 W6 W6

4.0

4.3 W7 W7

4.9 W8 W8

5.0

5.2

5.7 W1

5.9 W9 W9

6.0

6.2

6.3 W2

7.0 W3, W4

7.2

Output Control

select irstream value from
MyStream.win:time(5.5 sec)

Time Value Input Stream Remove Stream
0.2 W1
0.8 W2
1.0
1.2 W1, W2
1.5 W3, W4
2.0
2.1 W5
2.2 W3, W4, W5
2.5
3.0
3.2 null
3.5 W6
4.0
4.2 W6
4.3 W7
4.9 W8
5.0
5.2 W7, W8
5.7
5.9 W9
6.0
6.2 W9 W1
6.3
7.0
7.2 Null W2, W3, W4

Output Control

select irstream value from
MyStream.win:time(5.5 sec)
output every 1 seconds

Time Value Input Stream Remove Stream
0.2 W1
0.8 W2
1.0
1.2 W2
1.5 W3, W4
2.0
2.1 W5
2.2 W5
2.5
3.0
3.2 null
3.5 W6
4.0
4.2 W6
4.3 W7
4.9 W8
5.0
5.2 W8
5.7
5.9 W9
6.0
6.2 W9 W1
6.3
7.0
7.2 W4

Output Control

select irstream value from
MyStream.win:time(5.5 sec)
output last every 1 seconds

Time Value Input Stream Remove Stream
0.2 W1
0.8 W2
1.0
1.2 W1, W2
1.5 W3, W4
2.0
2.1 W5
2.2 W1, W2, W3, W4, W5
2.5
3.0
3.2 W1, W2, W3, W4, W5
3.5 W6
4.0
4.2 W1, W2, W3, W4, W5, W6
4.3 W7
4.9 W8
5.0
5.2 W1, W2, W3, W4, W5, W6,

W7, W8
5.7
5.9 W9
6.0
6.2 W2, W3, W4, W5, W6, W7,

W8, W9
6.3
7.0
7.2 W5, W6, W7, W8, W9

Output Control

select irstream value from
MyStream.win:time(5.5 sec)
output snapshot every 1 seconds

StreamBase

CREATE OUTPUT STREAM TrafficStats AS
SELECT openval() AS StartOfTimeSlice,
avg(Occupancy) AS AvgCarsPerSecond,
stdev(Occupancy) AS StdevCarsPerSecond,
lastval(Occupancy) AS LastCarsPerSecond,
StationNum
FROM trafficStream [SIZE 20 ADVANCE 1 ON
 StartOfTimeSlice PARTITION BY
 StationNum]
GROUP BY StationNum;

Esper

CREATE CONTEXT TrafficPerStation
 PARTITION BY StationNum from
trafficStream

 CONTEXT TrafficPerStation
 SELECT timestamp,
 avg(Occupancy) AS AvgCarsPerSecond,
 stdev(Occupancy) AS StdevCarsPerSecond,
 lastval(Occupancy) AS LastCarsPerSecond,
 FROM trafficStream.win:length(20)

Window-Based Stream Partitioning

Streambase
 SELECT A.id AS fi, C.id AS fo

 FROM PATTERN A  !B  C WITHIN 5 TIME

 WHERE B.id == A.id

 INTO out;

Esper
 select a.custId, sum(a.price + b.price)

 from pattern

 [every a=ServiceOrder  b=ProductOrder(custId = a.custId)
 where timer:within(1 min)].win:time(2 hour)

 where a.name in ('Repair', b.name)

 group by a.custId

 having sum(a.price + b.price) > 100

Pattern Specification

• Goals
• Guaranteed data processing
• Fault tolerance
• Horizontal scalability
• Allows one to use a high‐level programming language

Toward a Distributed DSMS for Large, High
Velocity Data

Two Recent Distributed Stream Platforms

The Distributed Setting for Storm/Trident

• Sequential Consistency: Updates from a client will be applied in
the order that they were sent.

• Atomicity: Updates either succeed or fail.

• Single System Image: A client will see the same view of the
service regardless of the server that it connects to.

• Reliability: Once an update has been applied, it will persist from
that time forward until a client overwrites the update.

• Timeliness: The clients view of the system is guaranteed to be up-
to-date within a certain time bound.

Zookeeper Guarantees

• Storm uses Zookeeper for
• Discovery of nodes
• Storing the state of Nimbus and Supervisor processes
• Guaranteed message processing and tracking
• Storing statistics

• The actual heavy lifting (i.e., internode
communication) uses a library called zero MQ

•Storm and Zookeeper

• Spouts: A spout is a source of streams. For example, a spout may read tuples off of a
Kestrel queue and emit them as a stream. Or a spout may connect to the Twitter API
and emit a stream of tweets.

• Bolts: A bolt consumes any number of input streams, does some processing, and
possibly emits new streams. Complex stream transformations, require multiple steps
and thus multiple bolts. Bolts can do anything from run functions, filter tuples, do
streaming aggregations, do streaming joins, talk to databases, and more.

• Topology: A topology is a graph of stream transformations where each node is a
spout or bolt. Edges in the graph indicate which bolts are subscribing to which
streams. When a spout or bolt emits a tuple to a stream, it sends the tuple to every
bolt that subscribed to that stream.

The Storm Computing Model

• Scenario
• There is a building with a number of rooms. There are a bunch of

people wearing sensors going into and coming out of rooms. Every time
some one enters and leaves, the sensors emit data giving out that
information with a timestamp.

• Goal: create an occupancy timeline for each room.
• Data schema: (eventType, userID, timeStamp, roomID, dataID, corrID)

• Events are not guaranteed to respect chronological order

•A Simple Non-trivial Example
Credit: Svend Vanderveken

• What comes in

• What the system should produce

•Input and Output

{"eventType": "ENTER", "userId": "John_5", "time": 1374922058918, "roomId": "Cafetaria", "id":
"bf499c0bd09856e7e0f68271336103e0A", "corrId": "bf499c0bd09856e7e0f68271336103e0"}
{"eventType": "ENTER", "userId": "Zoe_15", "time": 1374915978294, "roomId": "Conf1", "id":
"3051649a933a5ca5aeff0d951aa44994A", "corrId": "3051649a933a5ca5aeff0d951aa44994"}
{"eventType": "LEAVE", "userId": "Jenny_6", "time": 1374934783522, "roomId": "Conf1", "id":
"6abb451d45061968d9ca01b984445ee8B", "corrId": "6abb451d45061968d9ca01b984445ee8"}
{"eventType": "ENTER", "userId": "Zoe_12", "time": 1374921990623, "roomId": "Hall", "id":
"86a691490fff3fd4d805dce39f832b31A", "corrId": "86a691490fff3fd4d805dce39f832b31"}
{"eventType": "LEAVE", "userId": "Marie_11", "time": 1374927215277, "roomId": "Conf1", "id":
"837e05916349b42bc4c5f65c0b2bca9dB", "corrId": "837e05916349b42bc4c5f65c0b2bca9d"}
{"eventType": "ENTER", "userId": "Robert_8", "time": 1374911746598, "roomId": "Annex1", "id":
"c461a50e236cb5b4d6b2f45d1de5cbb5A", "corrId": "c461a50e236cb5b4d6b2f45d1de5cbb5"}

{"roomId":"Cafetaria","sliceStartMillis":1374926400000,"occupancies":[11,12,12,12,13,15,15,14,1

An intermediate output

The Computation Scheme

• Read input events in JSON

• Gather "enter" and "leave" events into "presence periods"

• Build room timelines

Goal: build a minute-by-minute occupancy timeline of each room
Trident Topology

TridentTopology topology = new TridentTopology();

topology
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))
.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent"))

.each(new Fields("occupancyEvent"), new ExtractCorrelationId(), new Fields("correlationId"))

.groupBy(new Fields("correlationId"))

.persistentAggregate(PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new PeriodBuilder(),
new Fields("presencePeriod"))
.newValuesStream()

.each(new Fields("presencePeriod"), new IsPeriodComplete())

.each(new Fields("presencePeriod"), new BuildHourlyUpdateInfo(), new Fields("roomId", "roundStartTim

.groupBy(new Fields("roomId", "roundStartTime"))

.persistentAggregate(TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomId", "roundSta
 new TimelineUpdater(), new Fields("hourlyTimeline"));

• Trident topologies compile down into as efficient of a Storm
topology as possible. Tuples are only sent over the network
when a repartitioning of the data is required, such as if you do a
groupBy

Trident Topologies

• Read input events in JSON

• Gather "enter" and "leave" events into "presence periods"

• Build room timelines

Goal: build a minute-by-minute occupancy timeline of each room
Trident Topology

TridentTopology topology = new TridentTopology();

topology
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))
.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent"))

.each(new Fields("occupancyEvent"), new ExtractCorrelationId(), new Fields("correlationId"))

.groupBy(new Fields("correlationId"))

.persistentAggregate(PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new PeriodBuilder(),
new Fields("presencePeriod"))
.newValuesStream()

.each(new Fields("presencePeriod"), new IsPeriodComplete())

.each(new Fields("presencePeriod"), new BuildHourlyUpdateInfo(), new Fields("roomId", "roundStartTim

.groupBy(new Fields("roomId", "roundStartTime"))

.persistentAggregate(TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomId", "roundSta
 new TimelineUpdater(), new Fields("hourlyTimeline"));

• Fields and Tuples
• Suppose there is a stream stream(x, y, z)

• stream.each(new Fields("y"), new MyFilter())
• public class MyFilter extends BaseFilter {

• public boolean isKeep(TridentTuple tuple)

• { return tuple.getInteger(0) < 10; }

• }
• stream.each(new Fields("x", "y"), new AddAndMultiply(), new

Fields("added", "multiplied"));
• public class AddAndMultiply extends BaseFunction {

• public void execute(TridentTuple tuple, TridentCollector collector)

• { int i1 = tuple.getInteger(0);

• int i2 = tuple.getInteger(1);

• collector.emit(new Values(i1 + i2, i1 * i2)); }

 }

Trident Abstractions
Tuples are internally processed in batches

• Read input events in JSON

• Gather "enter" and "leave" events into "presence periods"

Goal: build a minute-by-minute occupancy timeline of each room
Trident Topology

TridentTopology topology = new TridentTopology();

topology
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))
.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent"))

.each(new Fields("occupancyEvent"), new ExtractCorrelationId(), new Fields("correlationId"))

.groupBy(new Fields("correlationId"))

.persistentAggregate(PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new
PeriodBuilder(), new Fields("presencePeriod"))
.newValuesStream()

.each(new Fields("presencePeriod"), new IsPeriodComplete())

.each(new Fields("presencePeriod"), new BuildHourlyUpdateInfo(), new Fields("roomId",
"roundStartTime"))
.groupBy(new Fields("roomId", "roundStartTime"))
.persistentAggregate(TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomId",
"roundStartTime"),
 new TimelineUpdater(), new Fields("hourlyTimeline"));

 Build room timelines

• Suppose we have a stream with fields val1 and val2
• stream.aggregate(new Fields("val2"), new Sum(), new Fields("sum"))

• The output stream would only contain a single tuple with a single field
called "sum", representing the sum of all "val2" fields in that batch.

• stream.groupBy(new Fields("val1")) .aggregate(new Fields("val2"), new
Sum(), new Fields("sum"))

• the output will contain the grouping fields followed by the fields emitted by
the aggregator

• the output will contain the fields "val1" and "sum"

•

Computing Aggregates

• State: content of the data at any instant
• Sometimes we want to do state updates (e.g., an external databases) so

that it's like each message was only processed only once
• Trident solves this problem by doing two things:

• Each batch is given a unique id called the "transaction id". If a batch is
retried it will have the exact same transaction id.

• State updates are ordered among batches. That is, the state updates for
batch 3 won't be applied until the state updates for batch 2 have
succeeded.

Trident States

• persistentAggregate is an additional abstraction that
• takes a Trident aggregator
• uses it to apply updates to the source of state
• The programmer implements the "MapState" interface

• The grouping fields will be the keys in the state, and the aggregation result
will be the values in the state.

• public interface MapState<T> extends State{

• List<T>multiGet(List<List<Object>> keys);

• List<T>multiUpdate(List<List<Object>> keys, List<ValueUpdater> updaters);

• void multiPut(List<List<Object>> keys, List<T> vals); }

Trident PersistentAggregates

An Example

• Read input events in JSON

• Gather "enter" and "leave" events into "presence periods"

Goal: build a minute-by-minute occupancy timeline of each room
Trident Topology

TridentTopology topology = new TridentTopology();

topology
.newStream("occupancy", new SimpleFileStringSpout("data/events.json", "rawOccupancyEvent"))
.each(new Fields("rawOccupancyEvent"), new EventBuilder(), new Fields("occupancyEvent"))

.each(new Fields("occupancyEvent"), new ExtractCorrelationId(), new Fields("correlationId"))

.groupBy(new Fields("correlationId"))

.persistentAggregate(PeriodBackingMap.FACTORY, new Fields("occupancyEvent"), new PeriodBuilder(),
new Fields("presencePeriod"))
.newValuesStream()

.each(new Fields("presencePeriod"), new IsPeriodComplete())

.each(new Fields("presencePeriod"), new BuildHourlyUpdateInfo(), new Fields("roomId",
"roundStartTime"))
.groupBy(new Fields("roomId", "roundStartTime"))
.persistentAggregate(TimelineBackingMap.FACTORY, new Fields("presencePeriod","roomId",
"roundStartTime"),
 new TimelineUpdater(), new Fields("hourlyTimeline"));

 Build room timelines

• At SDSC, we are evaluating this framework for an application
called BuildingDepot

Monitoring Energy Use

Monitoring and Control of Energy Use in Buildings
• Instrumenting more buildings with newer sensors and actuators
• 80k sensor streams now, will increase to 500k soon
• Using more spatial knowledge for effective predictive analysis

Courtesy: Yuvraj Agarwal

•Social Life Networks

GRAPH DATA

What Do You Mean “Graphs”?

• In this graph
• Edges are

directional
• There are no

edge weights
• Nodes do not

have their
own types

• There are no
self loops

• No logical
constraints

Oh! You mean Networks!!

Node/
vertex

Edge

Node
Properties

Edge Properties

Edge Property Type

• Who should be on my board of advisors?
• I already have A, B, C and D and need two more people who should

• Have name recognition in their fields, which should be “around” Computer
Science

• Should have reasonably high visibility

• Should be known to at least two of my current members

• Should get along with C

• Have a lot of “business connections”

• Be independently wealthy, and if possible, an entrepreneur

• Not be involved in any recent negative press

A Real-World “Business” Problem

• What are potential pharmaceutical compounds C which are
potentially useful for orphan disease D?

• These compounds should satisfy the following properties
• They are not yet applied to D

• They are not in the FDA approval pipeline for D

• They have been applied to humans and model organisms

• They operate on genes products in pathways that are relevant

• Because these pathways are related to some phenotypes exhibited by D in

humans or model organisms

• They have not been identified as toxins for any target related to human
health

A Real-World Science Problem

• Structurally, most data models can be viewed as graphs
• Does not mean they should be
• Relation R(A,B,C), pk(A) – with tuple r1(1,2,3) can become

• R—attribA, R—attribB, R—attribC, R—pkA

• r1—instanceOfR

• r 1–A1, r1—B2, r1—C3

• XML (without idRef) is modeled as an edge-labeled tree, therefore it is a
graph

Why is a Graph a “Natural Model” for
these problems?

• How about text?
• Parsegraphs

Why is a Graph a “Natural Model” for
these problems?

S

NP VP

NP CC NP

NN NNS

ABeta Peptides and/or

NN NNS

ABeta deposits

JJ

extracellular

NP

NN NNS

alpha-syn aggregation

JJ

intracellular

VP

VB

promote

MD

may

ADVP

…

nsubj

nn dobj nn

amod

group1

start end
group2

start end

ARG1

ARG2

• Ontologies are graphs (with rules)
• Social Interactions are graphs

• Therefore regardless of whether

data are “born” as graphs, they can
be abstracted as graphs

• This makes graphs a uniquely
positioned data model for
heterogeneous information
integration

• However, these graphs may have
different semantics that need to be
accounted for

Why is a Graph a “Natural Model” for
these problems?

• Who should be on my board of advisors?

• I already have A, B, C and D and need two more people who should

• Have name recognition in their fields,

• which should be “around” Computer Science

• Should have reasonably high visibility

• Should be known to at least two of my current members

• Should get along with C

• Have a lot of “business connections”

• Be independently wealthy, and if possible, an entrepreneur

• Not be involved in any recent negative press

A Real-World “Business” Problem

Query DBPedia graph for subjects and areas
related to CS, authors from DBLP to get pub
venues and authors

Query their citation networks to compute h-index variants

Web pages (journals, conf.,
research labs …) to find
“important positions”

Co-presence graphs

Linked-In Connections

Text Analysis

Ask C

Linked-In Profile,
Services sold by banks

• Storage, of course
• Computation with graphs

• For example, finding centrality measures

• Retrieval
• Conditional traversals, query pattern matching

• Manipulations
• Intersections, joins

• Mining
• Finding k most frequently referred entities over a set of entity-mapped graphs in a

given context

• Finding frequent structural patterns

• Ranking over paths
• Is this connection (i.e., path) between two members more important than that?

Graph Functionality needed

• Somewhat dependent on the intended functionality
• Neo4j – a traversal-centric system

Representation and Storage

Dex: A Retrieval-Centric Storage Model
Representation and Storage

• A Graph

• A bitmap-based representation

Graphs and Bitmaps

• Computing properties of nodes that are based on
• the structure/content of the graph

• evolving structure/content of the graph

• Often uses adjacency matrices

• Many of these computations are iterative which eventually converge
• Classical MapReduce-based computations are not iterative

• Systems like Mesos and Spark are trying to modify these computations to
allow iterative algorithms that pass data from iteration to iteration

• Harder for large graphs if they don’t remain in memory

• This led to the development of Bulk Synchronous Graph Processing
algorithms

• Google’s Pregel

Graph Computation

BSP Example

• Some interesting decisions
• GPS includes an optimization called LALP (large adjacency list partitioning)

where adjacency lists of high-degree vertices are partitioned across
workers

• This optimization can improve performance, but only for algorithms with two
properties:

• Vertices use their adjacency lists (outgoing neighbors) only to send messages and

not for computation

• If a vertex sends a message, it sends the same message to all of its outgoing

neighbors

• Dynamic Repartitioning
• Reassign certain vertices to other workers dynamically during algorithm

computation

GPS – Stanford’s Graph Computation System

Neo4j
•Query Operations over Graphs

D
EX

 G
ra

p
h

 D
at

ab
as

e

http://www.sparsity-technologies.com

Query Database in Dex

…
DbGraph dbg = s.getDbGraph();
Objects persons = dbg.select(person);
Objects.Iterator it = persons.iterator();
while (it.hasNext()) {
 long p = it.next();
 String name = dbg.getAttribute(p,
name).toString();
}
it.close();
persons.close();
…

JOHN
18

KELLY

MARY

JOHN
18

KELLY

MARY

1995

4pm

5pm

6pm

2000

Retrieve data example

D
EX

 G
ra

p
h

 D
at

ab
as

e

http://www.sparsity-technologies.com

Query Database in Dex

…
Objects objs1 = dbg.select(when, >=, 5pm);
// objs1 = { e5, e6 }
Objects objs2 = dbg.explode(p1, phones, OUT);
// objs2 = { e4, e5 }
Objects objs = objs1.intersection(objs2);
// objs = { e5, e6 } ∩ { e4, e5 } = { e5 }
…
objs.close();
objs1.close();
objs2.close();
…

JOHN
18

KELLY

MARY

JOHN
18

KELLY

MARY

1995

4pm

5pm

6pm

2000

Navigation & Objects operations example

OUR RESEARCH – OPERATING ON
ONTOLOGY GRAPHS

The Shredded Ontology - 1

• The reified triples

<owl:Class rdf:ID="Wine">
 <rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasMaker" />
 <owl:someValuesFrom rdf:resource="#Winery" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<Wine> rdf:type owl:Class
<Wine> rdfs:subClassOf food:PotableLiquid
<Wine> <hasMaker> <Winery>
<Wine> rdfs:subClassOf <something [exists] hasMaker Winery>
<something [exists]hasMaker Winery> rdf:type owl:Restriction
<something [exists]hasMaker Winery> owl:onProperty <hasMaker>
<something [exists]hasMaker Winery> owl:someValuesFrom <Winery>

Wine ⊑ food:PortableLiquid
Wine ⊑ ∃ hasMaker.Winery

Syntax-based triples

Locally inferred triples

The Shredded Ontology – 2

• The DAG Indexes
• One per transitive relationship, one per subproperty

tree
• Modified SSPI

• Index the embedded tree and non-tree portions separately
• Embedded tree has a Dewey index
• Non-tree edges is maintained in a “minimal” skeleton structure to

connect them to nearest ancestors

• Statistics is kept at nodes to perform limited-depth
queries

• Complex, multi-reachability patterns still a problem
• It is wiser to treat “hub nodes” specially

DAGs for
transitive relationships

part-of, continuous-with, member-of
sub-property relationships

volumetric-part-of <sp proper-part-of <sp part-of

c1

b1 e2

a1

m1

e1

c4 p1

c2

m2

{c2, a1}
{c4}
{a1}
{a1}

b1
a1
e2
m2

preds nid

The Shredded Ontology – 3

• Bitmap Indices
• Derived from RDF triples

 PSIndex Property Subject Objects (bitmap)

POIndex Property Object Subjects (bitmap)

SOIndex Subject Object Properties(bitmap)

SSJIndex Property Property Subjects (bitmap) (S,P1,O1),(S,P2,O2)

SOJIndex Property Property Subjects (bitmap) (X,P1,O),(S,P2,X)

OOJIndex Property Property Objects (bitmap) (S1,P1,O),(S2,P1,O)

 Using the Bitmap Indices
 Select genes that have no associated proteins

 POIndex(type,gene) && ! SSJoin(type,expressesProtein)

•The Shredded Ontology – 4

• The keyword index
• Simple inverted index of all string-valued literals
• Support partial string matches and regular

expressions on strings
• Distinguish between class nodes, edge labels and

instance nodes

Keyword Queries using the Ontology

• Classify keywords
• Find LCA concepts of a conjunctive query
• Find if specific distinguished classes appear in queries

• “Alzheimer’s” subclass-of Disease
• Apply Class-specific expansion rules

• For items classified as anatomical object get part-of descendants, not
including the cell module

• For items classified as cell, get subclasses, by executing property chains
if needed

• property chain is a new edge-label, defined using a positive, non-recursive first
order rule

• Find data in sources using expanded query
• Ontological relationships

• Find up to k-distance paths amongst pairs of hot keywords in
conjunctive queries

• Find data source elements that are mapped to these relationships
• Rank Results??

Querying the Ontology

• Extending the TERP query language (Sirin et al)
• TERP is a syntactic enhancement of the SPARQL

• Our extensions allow
• transitive operations and path expressions on edges
• graph output

SELECT ?diseaseProcess
WHERE {
 ?diseaseProcess rdfs:subClassOf+ (:degenerativeProcess and
 :actsSpecificallyOn some ?muscle) .
 (?muscle :isSolidDivisionOf+

 (:subClassOf+ cardiacMuscle))
}

Query Planning within OntoQuest

• Rewrite the where clause using intermediate
variables

WHERE {
 ?diseaseProcess rdfs:subClassOf+ ?a .
 ?a intersectionOf (:degenerativeProcess, ?b) .
 ?b onProperty :actsSpecificallyOn .
 ?b owl:someValuesFrom ?muscle .
 ?muscle :isSolidDivisionOf+ ?c .
 ?c rdfs:subClassOf+ :cardiacMuscle
}

?dp

?a

degenerativeProcess

?m

cardiacMuscle

?c

actsSpecificallyOn

isSolidDivisionOf+

∩

?b

Query Planning within OntoQuest

• Some semantic rewrites (what are all the rewrite
rules?)

?dp

?a

degenerativeProcess

?m

cardiacMuscle

?c

actsSpecificallyOn

isSolidDivisionOf+

∩

?b

?dp

?a

degenerativeProcess

?m

cardiacMuscle

?c

actsSpecificallyOn

isSolidDivisionOf+

?b

∪

Query Planning and Optimization

• Some standard rewrites
• Map GRAPH IRI GroupGraphPattern to Graph(IRI,

GroupGraphPattern)
• Map all graph patterns contained in a group to

produce a list, SP, of algebra expressions
• For example

• for i := 0 ; i < length(SP); i++
• If SP[i] is an OPTIONAL,
• If SP[i] is of the form OPTIONAL(Filter(F, A))
• G := LeftJoin(G, A, F)
• else
• G := LeftJoin(G , A, true)
• Otherwise for expression SP[i], G := Join(G, SP[i])

Selectivity

Bound Variables Operation Type Selectivity
1 prop1, prop2, obj SSJoin High
2 prop1, prop2, obj SOJoin Very high
3 prop1, sub, prop2 OOJoin High
4 prop1, prop2 SOJoin, OOJoin or SSJoin Medium
5 Sub, obj SOSelect High
6 Sub, prop PSSelect High
7 Prop, obj PSSelect High
8 prop Union(PSSelect), Union(POSelect) Very Low
9 sub Union(PSSelect), Union(SOSelect) Low

10 obj Union(POSelect), Union(SOSelect) Low
11 Prop+, obj DAG_descendants High
12 Prop+, sub DAG_ancestors Medium
13 keyword Kw_search High

• Basic Graph Patterns are planned by selectivity estimates

Next round should use statistics and a cost model

Query Plan Example

• Query

?c = DAG_descendants('rdfs:subClassOf', kw-index(:cardiacMuscle));
?muscle = DAG_descendants(':isSolidDivisionOf', ?c);
?b = POSelect(?b kw_index(:actsSpecificallyOn) to_bitmap(?muscle));
?a1= AND (:dP, ?b);
?a2=BITMAP_AND (sojoin(sc+, sc+), to_bitmap(dag_desc(sc, :dP)))
?a = ?a1 union ?a2
?diseaseProcess = DAG_descendants('rdfs:subClassOf', ?a).

?dp

?a

dp

?m
cM

?c

actsSpecificallyOn

isSolidDivisionOf+

∩

?b

?dp
?a

?dp

?m
cM

?c

actsSpecificallyOn

isSolidDivisionOf+

?b

OntoQuest Performance – 1

• Data set 1: NIFSTD ontology
• # of Nodes: 467,848, # of Nodes in the subClassOf

DAG: 45,882, total # of descendant results:
2,748,292

Metric Time (in ms)

Avg. time for getDescendants 12.21

Max. time for getDescendants 1866
(203,222 results)

Avg. time to get paths between 2 nodes 28

Avg. time to get all paths to a node through k given nodes 190

Given an unordered list of nodes, find the paths
connecting all of them 210

Time for SSJoin, SOJoin, OOJoin over 66,564 p-p pairs
(bitmap returned) 644, 456, 468 resp.

Time for SSJoin, SOJoin, OOJoin over 66,564 p-p pairs
(Node IDs returned) 977, 593, 480 resp.

OntoQuest Performance – 2
Query Time(ms)

SELECT ?structure
WHERE {
 ?structure rdfs:subClassOf ?o1 .
 ?o1 owl:intersectionOf (:SolidStructure
?a2 ?a3) .
 ?a2 owl:onProperty :isStructuralComponentOf .
 ?a2 owl:someValuesFrom :Leg .
 ?a3 owl:onProperty :isPairedOrUnpaired
.
 ?a3 owl:someValuesFrom :atLeastPaired
 }

175

SELECT ?structure
WHERE {
 ?structure rdfs:subClassOf+ :SolidStructure }

1450 tuples
173(only node ids)

336(all node properties)
SELECT ?structure
WHERE {
 ?structure rdfs:subClassOf+ (:SolidStructure and
 :Duct). }

209 (only node ids)
211(all node properties)

What degenerative diseases affect some cardiac
muscle?

206(only node ids)
207 (all node properties)

Next Steps in our Research

• Exploring an extended version of neo4j as the
graph representation

• Combining with a BSP style computation
engine

• Developing architecture-aware optimization
rules

	Management of Stream and Graph Data
	Prologue
	Examples of New Models
	STREAM DATA
	Slide Number 5
	A Slightly Modified Version of 8 Rules
	What makes streams different?
	DBMS vs. DSMS
	A Data Model for Streams
	A Stream (Event) Processor
	Windowing
	Window-based Selection (Esper)
	Slide Number 13
	Output Control
	Output Control
	Output Control
	Output Control
	Window-Based Stream Partitioning
	Pattern Specification
	Toward a Distributed DSMS for Large, High Velocity Data
	Two Recent Distributed Stream Platforms
	The Distributed Setting for Storm/Trident
	Slide Number 23
	Zookeeper Guarantees
	Storm and Zookeeper
	The Storm Computing Model
	A Simple Non-trivial Example
	Input and Output
	The Computation Scheme
	Trident Topology
	Trident Topologies
	Trident Topology
	Trident Abstractions
	Trident Topology
	Computing Aggregates
	Trident States
	Trident PersistentAggregates
	An Example
	Trident Topology
	Monitoring Energy Use
	Social Life Networks
	GRAPH DATA
	What Do You Mean “Graphs”?
	Oh! You mean Networks!!
	A Real-World “Business” Problem
	A Real-World Science Problem
	Why is a Graph a “Natural Model” for these problems?
	Why is a Graph a “Natural Model” for these problems?
	Why is a Graph a “Natural Model” for these problems?
	A Real-World “Business” Problem
	Graph Functionality needed
	Representation and Storage
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Representation and Storage
	Slide Number 60
	Slide Number 61
	Graphs and Bitmaps
	Slide Number 63
	Graph Computation
	BSP Example
	GPS – Stanford’s Graph Computation System
	Query Operations over Graphs
	Slide Number 68
	Query Database in Dex
	Query Database in Dex
	Our research – Operating on Ontology Graphs
	The Shredded Ontology - 1
	The Shredded Ontology – 2
	The Shredded Ontology – 3
	The Shredded Ontology – 4
	Keyword Queries using the Ontology
	Querying the Ontology
	Query Planning within OntoQuest
	Query Planning within OntoQuest
	Query Planning and Optimization
	Selectivity
	Query Plan Example
	OntoQuest Performance – 1
	OntoQuest Performance – 2
	Next Steps in our Research

